令和6年度 森林・林業・木材産業グリーン成長総合対策補助金等(建築 用木材供給・利用強化対策のうちCLT・LVL等の建築物への利用環境 整備事業のうちCLT・LVL等を活用した建築物の低コスト化の推進の うちCLT・LVL等を活用した建築物の低コスト化・検証等事業)

# CLT パネルに長ビスを用いたせん断接合部等の

# 開発事業報告書

# 令和7年3月

# 木構造振興株式会社

# 目次

| 1.事業; | 概要                              | 1          |
|-------|---------------------------------|------------|
| 1.1.  | 事業の目的                           | 1          |
| 1.2.  | 実施内容                            | 2          |
| 1.3.  | 実施体制                            | 5          |
| 2.床-床 | 未接合 斜め交差打ちビス接合の面外せん断試験          | 7          |
| 2.1.  | 試験の目的                           | 7          |
| 2.2.  | 試験の種類                           | 8          |
| 2.3.  | 試験体仕様と試験方法                      |            |
| 2.4.  | 試験方法、評価方法                       | 11         |
| 2.5.  | 試験結果                            | 12         |
| 2.6.  | 考察                              | 19         |
| 3.壁−床 | 末接合 ビス接合の面内せん断試験                | 20         |
| 3.1.  | 試験の目的                           | 20         |
| 3.2.  | 検討方針                            | 20         |
| 3.3.  | ー次試験の内容                         | 22         |
| 3.4.  | 二次試験(本試験)の種類                    |            |
| 3.5.  | 試験体仕様                           |            |
| 3.6.  | 試験方法、評価方法                       | 30         |
| 3.7.  | 試験結果                            | 31         |
| 3.8.  | 考察                              | 43         |
| 3.9.  | 再評価の結果                          |            |
| 3.10  | ). 設計に用いる接合部仕様                  |            |
| 4.壁−床 | 末接合 ビス接合の面外せん断試験                | $\dots 50$ |
| 4.1.  | 試験の目的                           | 50         |
| 4.2.  | 試験の種類                           | 50         |
| 4.3.  | 試験体仕様                           | 51         |
| 4.4.  | 試験方法、評価方法                       | 52         |
| 4.5.  | 試験結果                            | 53         |
| 4.6.  | 考察                              | 61         |
| 4.7.  | 再評価の結果                          | 62         |
| 5.壁−直 | 直交壁接合 ビス接合仕様規定の評価方法の検討及び面内せん断試験 | 63         |
| 5.1.  | 検討の目的                           | 63         |
| 5.2.  | 検討方針                            | 65         |
| 5.3.  | 評価方法の検討                         | 66         |
| 5.4.  | 試験の種類                           | 68         |
| 5.5.  | 試験体仕様                           | 69         |
| 5.6.  | 試験方法、評価方法                       | 73         |
| 5.7.  | 試験結果                            |            |

| 5.8.  | 考察                              |     |
|-------|---------------------------------|-----|
| 5.9.  | 同等性の評価                          | 83  |
| 6.床-梁 | 接合 面材ビス1本あたりの一面せん断特性を算定するための試験. | 86  |
| 6.1.  | 試験の目的                           |     |
| 6.2.  | 試験の種類                           |     |
| 6.3.  | 試験体仕様                           |     |
| 6.4.  | 試験方法                            |     |
| 6.5.  | 試験結果                            |     |
| 6.6.  | グラフの補正方法の検討                     |     |
| 6.7.  | 特性値の算出方法の検討                     | 106 |
| 7.ビス( | の引き抜き試験                         | 115 |
| 7.1.  | 試験の目的                           | 115 |
| 7.2.  | 試験の種類                           | 115 |
| 7.3.  | 試験体仕様                           | 116 |
| 7.4.  | 試験方法                            | 126 |
| 7.5.  | 試験結果                            | 127 |
| 7.6.  | 考察                              | 140 |
| 8.ビス( | のせん断接合部における試験値と計算値との比較          | 141 |
| 8.1.  | 検討の目的                           | 141 |
| 8.2.  | 接合部の設計方法(案)                     | 141 |
| 8.3.  | ビス埋め込み長さ分のロープ効果が発揮できていないとする根拠   | 144 |
| 8.4.  | 試験値と計算値の比較                      | 146 |
| 9.まとる | b                               | 154 |

#### 1. 事業概要

#### 1.1. 事業の目的

欧米の CLT パネル工法では、下図のように長ビスを用いて木材同士を直接接合する方法が 主流となっているが、現在、日本で広く用いられている CLT パネル工法の接合部は、接合金 物を使用したものが多い。その背景としては、海外のような径が太く長いビスが流通してい ないため、日本にある既存の細く短いビスのみで構成される接合部では日本の高い耐震基準 に照らすと、強度性能的に対応できないことなどが挙げられる。

本事業では、令和5年度に引き続き、径の太い長ビスを用いて、CLTパネル工法用の接合 部を開発・普及させることによって、接合方法の合理化、低コスト化を図ることを目的とす る。



図 1.1-1 海外の CLT ビス接合部の例

### 1.2. 実施内容

#### (1) 長ビスを用いた床-床接合の強度性能の検証

昨年度までの成果である床-床接合の面内せん断性能について、「CLTを用いた建築物の 設計施工マニュアル」<sup>1)</sup>への反映を行ったところである。

今年度は、水平構面のせん断接合と併用する形で、垂れ壁端部の跳ね上げ防止としてビス 斜め打ち接合の面外せん断性能の検討を行う。



# 図 1.2-1 CLTパネル工法建築物の倒壊限界を考慮した耐震基準提案に関する検討 委員会資料より抜粋

#### (2) 長ビスを用いた壁-床接合の強度性能の検証

長ビスを用いた壁-床 CLT 間のせん断接合部の強度性能の検証を行った。図 1.2-2 に示す とおり従来の金物を使う場合は下階壁 CLT とその上に載る床 CLT を接合する場合は、脚 立等を用いて下階から上方向に向けて施工しなければならないが、長ビスを用いた場合は 床上から下向きにビスを打ち込むことができるので、施工性が向上する。

本報では、壁3層3プライー床3層3プライまたは5層5プライの組み合わせで強軸方向・弱軸方向それぞれの試験を実施した。



#### (3) 長ビスを用いた壁—直交壁の面内せん断性能の検証

中高層・非住宅の建築物を対象とした場合、壁脚壁頭部の引張接合部には過大な強度性能 が要求されることとなる。

図 1.2-3 のように壁-壁接合部に長ビス接合を用いることで、耐力壁の強度性能を向上さ せる、或いは要求性能に対して壁脚壁頭部の引張接合部を軽減することができる。

試験体仕様は、図 1.2-3 のとおり直交壁勝ち、直交壁負け、それぞれのせん断性能の検証 を行う。使用するビスは半ねじ、フルスレッドの 2 種類とし、CLT は 3 層 3 プライとす る。



図 1.2-3 壁--壁接合を利用した直交壁効果 出典:文献2)より抜粋

### (4) 長ビスを用いた梁―床接合の強度性能の検証

図 1.2-4 赤丸部分のように床接合に梁を併用した場合の長ビス接合について試験を行う。



#### (5)長ビスの引き抜き性能の検証

接合部設計式である EYT 式の算定に必要となる長ビスの引き抜き性能について検証を行った。

#### (6)長ビス接合部性能の設計ルールの検証

これまでの実験結果、算定式の検討結果から、長ビス接合の設計ルールについて整備を行った。

### 1.3. 実施体制

実施体制は、学識経験者等からなる委員会を設け、接合金物の要求性能、仕様、試験計 画、評価について諮問を受けた。試験機関は、(公財)日本住宅・木材技術センター試験研究 所及び(一財)建材試験センターで実施した。



図 1.3-1 実施体制図

CLT パネルに長ビスを用いたせん断接合部等の開発

#### 委員名簿

(敬称略、順不同)

#### 委員長

五十田 博 京都大学 生存圈研究所 教授

委員

| 河合 | 直人 | 工学院大学 | 建築学部建築学科 | 教授 |
|----|----|-------|----------|----|

青木 謙治 東京大学 大学院農学生命科学研究科 准教授

小林 研治 静岡大学学術院農学領域 生物資源科学科 住環境構造学研 究室 准教授

- 槌本 敬大 (国研)建築研究所材料研究グループ 上席研究員
- 中島 昌一 建築研究所構造研究グループ 主任研究員
- 荒木 康弘 国土交通省国土技術政策総合研究所 主任研究官
- 谷口 翼 (一社)日本 CLT 協会
- オブザーバー

(一社) 日本 CLT 協会

#### 事務局

鈴木 圭 木構造振興㈱ 主任研究員

#### 委員会開催実績

#### 第1回

日 時:令和6年 6月27日(木) 18:00~20:00
 会 場: teams による WEB 開催

#### 第2回

日時:令和6年 9月 9日(月) 13:00~15:00
 会場: teams による WEB 開催

#### 第3回

日 時:令和7年 1月16日(水) 13:00~15:00
 会 場: teams による WEB 開催

#### 第4回

日 時:令和7年 2月28日(金) 10:00~12:00
 会 場:teamsによる WEB 開催

# 2. 床-床接合 斜め交差打ちビス接合の面外せん断試験

# 2.1. 試験の目的

昨年度までの成果である床・床接合の面内せん断性能について、「CLTを用いた建築物の 設計施工マニュアル」<sup>1)</sup>への反映を行ったところである。

今年度は、水平構面のせん断接合と併用する形で、垂れ壁端部の跳ね上げ防止としてビス 斜め打ち接合の面外せん断性能の検討を行う。



図 2.1-1 CLTパネル工法建築物の倒壊限界を考慮した耐震基準提案に関する検討 委員会資料より抜粋(再掲)

# 2.2. 試験の種類

試験の種類は表 2.2-1 に示すとおりである。

また No.1 について試験を行ったところ、試験加力終盤に試験体が捻じれたので、No.2 か らは、図 2.2-1 のとおり振れ止めを設けることとした。

| 通                                     |               |      | CL          | CLTの種類  |       |       |              | 接合具の種類 |       |  |  |
|---------------------------------------|---------------|------|-------------|---------|-------|-------|--------------|--------|-------|--|--|
| L                                     | 試驗休記号         | 振れ止め | CI Tの樹種 / 等 | 床パネル    | ト     |       | 山径           | 接合具    | 休数    |  |  |
| 番                                     | 12/02/14/16/9 |      | 級/構成方法      | 層構成     | 加力方   | 名称    | цтт<br>d(mm) | 長さ     | (休)   |  |  |
| 号                                     |               |      | 顺/ 再成力五     | (厚さ)    | 向     |       | G ( IIIII )  | l(mm)  | (177) |  |  |
| 1                                     | X90-5-5S-N    | 無し   |             |         | 冷却    |       |              |        | 6     |  |  |
| 2                                     | X90-5-5S-E    | 有り   | スギCLT/      | 5 層5プライ | 7出 平田 | 合わじビフ | 0            | 220    | 1     |  |  |
| 3                                     | X90-5-5W-N    | 無し   | Mx60/A種構成   | (150mm) | 22 市山 | 主ねししへ | 9            | 220    | 1     |  |  |
| 4                                     | X90-5-5W-E    | 有り   |             |         | 기가 十日 |       |              |        | 6     |  |  |
| ····································· |               |      |             |         |       |       |              |        | 14    |  |  |

表 2.2-1 床-床接合(斜め交差打ちビス接合)の面外せん断試験





ビスの角度



強軸・弱軸

S



ビスの打ち方

X:斜め交差打ち

振れ止めの有無 exist nonexist



振れ止め無し



振れ止めあり

写真 2.2-1 振れ止めの有無

# 2.3. 試験体仕様と試験方法

# (1) ビスの仕様

当該試験で使用した長ビスは図 2.3-1 及び写真 2.3-1 のとおりである。 長ビスは全て全ねじであり、寸法規格は呼び径  $\varphi9$  mm、ビス長さ L=220 mmである。



図 2.3-1 全ねじビス HTS9-L220



写真 2.3-1 全ねじビス HTS9

#### (2) 試験体仕様

試験体形状は図 2.3-2,図 2.3-3 のとおりである。摩擦の影響を軽減するため、主材-側材間にはテフロンシートを挿入した。試験体の密度と含水率を表 2.3-1 に示す。なお、No.3~4 は予備試験として実施したものであるため、密度と含水率の測定は行っていない。



ヘクサビュラ穴付きタッピンねじHTS9-180



イクサビュラ穴付きタッピンねじHTS9-180





図 2.3-2 No.1,2 試験体図





図 2.3-3 No.3,4 試験体図

#### 表 2.3-2 密度と含水率

No.1 X90-5-5S-N

含水率(%) 質量 密度 No. 構成 平均 (kg) 3  $(g/cm^3)$ 2 R(DG1/2) 側材 3.98 9.6 9.5 7.9 9.0 0.42 9.2 1 側材 L(DG3/4) 9.9 9.5 8.3 3.88 0.41 9.0 7.5 7.88 主材 10.49.0 0.42R(DG1/2) 側材 9.4 3.88 0.41 10.1 9.4 8.7 2 側材 L(DG3/4)9.0 9.8 10.0 9.6 3.88 0.41 主材 9.49.3 8.6 9.1 7.860.42 側材 R(DG1/2) 9.7 9.0 9.9 9.5 3.90 0.42 3 側材 L(DG3/4)9.3 9.6 9.5 3.87 0.419.5 9.5 9.7 9.6 7.82 0.42 主材 9.7 R(DG1/2) 側材 9.7 9.4 9.8 9.6 3.88 0.41 側材 4 L(DG3/4)8.3 10.0 9.3 9.2 3.90 0.42主材 10.9 9.5 9.4 9.9 7.96 0.42 側材 R(DG1/2)9.6 11.010.6 10.44.080.44 5 側材 L(DG3/4)9.6 9.6 9.3 9.5 3.96 0.42主材 9.5 9.0 10.8 98 7.72 0.41 側材 R(DG1/2)8.8 9.48.6 8.9 3.82 0.416 側材 L(DG3/4) 9.8 9.6 9.3 9.6 3.92 0.42 7.9 7.74主材 9.1 8.7 8.6 0.41

| No.4 | X90· | -5- | 5 | W- | $\mathbf{E}$ |
|------|------|-----|---|----|--------------|
|------|------|-----|---|----|--------------|

| No. 構成 |    |          | 含水率  | 質量   | 密度   |      |      |            |
|--------|----|----------|------|------|------|------|------|------------|
|        |    | 1再几人     | 1    | 2    | 3    | 平均   | (kg) | $(g/cm^3)$ |
|        | 側材 | R(DG1/2) | 8.3  | 7.7  | 8.2  | 8.1  | 4.00 | 0.43       |
| 1      | 側材 | L(DG3/4) | 7.8  | 10.1 | 13.0 | 10.3 | 3.92 | 0.42       |
|        | 主材 | -        | 8.3  | 9.2  | 8.8  | 8.8  | 7.78 | 0.41       |
|        | 側材 | R(DG1/2) | 8.1  | 9.1  | 8.3  | 8.5  | 3.84 | 0.41       |
| 2      | 側材 | L(DG3/4) | 7.9  | 9.2  | 10.5 | 9.2  | 3.96 | 0.42       |
|        | 主材 | -        | 8.1  | 9.1  | 8.8  | 8.7  | 7.92 | 0.42       |
|        | 側材 | R(DG1/2) | 9.3  | 10.7 | 9.0  | 9.7  | 3.96 | 0.42       |
| 3      | 側材 | L(DG3/4) | 8.1  | 9.4  | 11.0 | 9.5  | 3.92 | 0.42       |
|        | 主材 | I        | 7.7  | 9.9  | 8.5  | 8.7  | 7.88 | 0.42       |
|        | 側材 | R(DG1/2) | 9.2  | 7.5  | 8.3  | 8.3  | 4.00 | 0.43       |
| 4      | 側材 | L(DG3/4) | 10.4 | 9.0  | 9.5  | 9.6  | 3.90 | 0.42       |
|        | 主材 | 1        | 8.6  | 8.8  | 8.8  | 8.7  | 7.96 | 0.42       |
|        | 側材 | R(DG1/2) | 8.4  | 8.7  | 8.1  | 8.4  | 4.04 | 0.43       |
| 5      | 側材 | L(DG3/4) | 8.6  | 9.3  | 9.2  | 9.0  | 3.96 | 0.42       |
|        | 主材 | -        | 8.6  | 7.5  | 7.9  | 8.0  | 7.82 | 0.42       |
|        | 側材 | R(DG1/2) | 8.4  | 10.7 | 9.0  | 9.4  | 3.86 | 0.41       |
| 6      | 側材 | L(DG3/4) | 8.4  | 10.0 | 9.1  | 9.2  | 3.86 | 0.41       |
|        | 主材 | _        | 8.3  | 8.7  | 7.8  | 8.3  | 7.86 | 0.42       |

### 2.4. 試験方法、評価方法

試験方法は写真 2.2-1 に示すとおり、側材は面内方向の開きや浮き上がりをシャコ万やスト ッパで押さえることとし、No.2,4 試験体は、主材側に振れ止めを設けた。

長期荷重だけでなく、耐力壁のロッキング挙動による短期荷重も想定されるので、一方向 の繰り返し試験とした。当て板は接合部に干渉しないような幅寸法とした。

加力方法は、一方向繰り返し加力とした。変位は左右、手前奥の4点のCLT相互の相対変 位とし、その平均を接合部の変位とした。

評価方法は完全弾塑性モデルによる評価とし、信頼水準 75%における 95%下側許容限界値 として評価を行った。

### 2.5. 試験結果

#### 2.5.1. X90-5-5S-N, X90-5-5S-E

荷重変位曲線を図 2.5.1-1 に、包絡線を図 2.5.1-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 2.5.1-1 及び表 2.5.1-2 に、破壊性状を写真 2.5.1-1~写真 2.5.1-14 に示 す。CLT の割裂が確認された。また、振れ止めが無い X90-5-5S-N は、部材相互の接合部に 捻じれが生じたが、振れ止めを設けた X90-5-5S-E については試験体の捻じれが見られなかっ た。





図 2.5.1-2 包絡線(ビス1本あたり)

| 表 2.5.1-1 | X90-5-5S-N | (振れ止め無し) |
|-----------|------------|----------|
|-----------|------------|----------|

完全弾塑性モデルによる評価(1試験体あたり(ビス8本))

X90-5-5S-N 包絡線から算出した各種特性値(試験体1体あたり)

| 試験体記号          |       |       | X90-5 | -5S-N |       |       | 亚坎荷   | <b></b> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | 亦動反粉  | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|----------------------------------------------|-------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 平均旭   | 保牢禰左                                         | 发到你奴  | 係数    | 下限値  |
| 1/10Pm (kN)    | 7.8   | 7.5   | 8.1   | 8.0   | 8.1   | 8.1   | 7.9   | 0.24                                         |       |       |      |
| 1/10 δ m (mm)  | 0.09  | 0.11  | 0.12  | 0.12  | 0.13  | 0.12  | 0.12  | 0.01                                         |       |       |      |
| 2/5Pm (kN)     | 31.3  | 30.0  | 32.5  | 32.0  | 32.3  | 32.3  | 31.7  | 0.95                                         |       |       |      |
| 2/5δm (mm)     | 0.54  | 0.60  | 0.61  | 0.62  | 0.67  | 0.65  | 0.62  | 0.05                                         |       |       |      |
| 2/3Pm (kN)     | 52.1  | 50.1  | 54.2  | 53.3  | 53.9  | 53.8  | 52.9  | 1.56                                         | 0.029 | 0.932 | 49.3 |
| 2/3δm (mm)     | 1.10  | 1.06  | 1.09  | 1.04  | 1.17  | 1.14  | 1.10  | 0.05                                         |       |       |      |
| 9/10Pm (kN)    | 70.4  | 67.6  | 73.2  | 72.0  | 72.7  | 72.6  | 71.4  | 2.11                                         |       |       |      |
| 9/10 δ m (mm)  | 1.82  | 1.75  | 1.99  | 1.80  | 2.15  | 1.97  | 1.91  | 0.15                                         |       |       |      |
| Pm (kN)        | 78.2  | 75.1  | 81.4  | 80.0  | 80.8  | 80.7  | 79.4  | 2.36                                         |       |       |      |
| δ m (mm)       | 2.50  | 2.50  | 3.00  | 2.80  | 3.70  | 2.80  | 2.88  | 0.44                                         |       |       |      |
| δu時荷重 (kN)     | 62.6  | 60.1  | 65.1  | 64.0  | 64.6  | 64.5  | 63.5  | 1.86                                         |       |       |      |
| δu (mm)        | 4.76  | 13.77 | 6.06  | 7.19  | 6.87  | 6.06  | 7.45  | 3.21                                         |       |       |      |
| 降伏耐力 Py (kN)   | 42.4  | 48.9  | 51.5  | 56.8  | 52.1  | 53.8  | 50.9  | 4.92                                         | 0.097 | 0.773 | 39.3 |
| δy (mm)        | 0.86  | 1.03  | 1.01  | 1.13  | 1.12  | 1.14  | 1.05  | 0.11                                         |       |       |      |
| 終局耐力 Pu (kN)   | 70.9  | 71.1  | 74.2  | 73.4  | 73.6  | 73.3  | 72.8  | 1.39                                         | 0.019 | 0.956 | 69.5 |
| 初期剛性 K (kN/mm) | 49.30 | 47.48 | 50.99 | 50.27 | 46.52 | 47.19 | 48.63 | 1.82                                         |       |       |      |
| 降伏点変位 δv(mm)   | 1.44  | 1.50  | 1.46  | 1.46  | 1.58  | 1.55  | 1.50  | 0.06                                         |       |       |      |
| 塑性率 μ=δu/δv    | 3.31  | 9.18  | 4.15  | 4.92  | 4.35  | 3.91  | 4.97  | 2.13                                         |       |       |      |
| 構造特性係数 Ds      | 0.42  | 0.24  | 0.37  | 0.34  | 0.36  | 0.38  | 0.35  | 0.06                                         |       |       |      |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。

| 表 2.5.1-2 | X90-5-5S-E | (振れ止め有 | すり)     |
|-----------|------------|--------|---------|
| 完全弾塑性モデルに | よる評価(1 試   | 験体あたり  | (ビス8本)) |

|                | X90-5-5S |
|----------------|----------|
| 項目             | Е        |
| 1/10Pm (kN)    | 8.4      |
| 1/10 δ m (mm)  | 0.09     |
| 2/5Pm (kN)     | 33.5     |
| 2/5δm (mm)     | 0.53     |
| 2/3Pm (kN)     | 55.8     |
| 2/3δm (mm)     | 1.04     |
| 9/10Pm (kN)    | 75.3     |
| 9/10 δ m (mm)  | 1.80     |
| Pm (kN)        | 83.7     |
| δ m (mm)       | 2.85     |
| δu時荷重 (kN)     | 73.3     |
| δu (mm)        | 9.01     |
| 降伏耐力 Py (kN)   | 46.8     |
| δy (mm)        | 0.80     |
| 終局耐力 Pu (kN)   | 77.5     |
| 初期剛性 K (kN/mm) | 58.50    |
| 降伏点変位 δv(mm)   | 1.32     |
| 塑性率 μ=δu/δv    | 6.83     |
| 構造特性係数 Ds      | 0.28     |



写真 2.5.1-1 NO.1 X90-5-5S-N-1 試験前



写真 2.5.1-2 NO.1 X90-5-5S-N-1 試験前



写真 2.5.1-3 NO.1 X90-5-5S-N-1 試験後



写真 2.5.1-4 NO.1 X90-5-5S-N-1 試験後



写真 2.5.1-5 NO.1 X90-5-5S-N-1 CLT の割裂



写真 2.5.1-7 NO.1 X90-5-5S-N-2 CLT の割裂



写真 2.5.1-6 NO.1 X90-5-5S-N-1 CLT の割裂



写真 2.5.1-8 NO.1 X90-5-5S-N-3 試験後



写真 2.5.1-9 NO.1 X90-5-5S-N-3 試験体のねじれ



写真 2.5.1-10 NO.1 X90-5-5S-N-3 試験体のねじれ



写真 2.5.1-11 No.1 X90-5-5S-N-4 CLT の割裂



写真 2.5.1-13 No.2 X90-5-5S-E CLT の割裂



写真 2.5.1-12 No1 X90-5-5S-N-5 試験体のねじれ



写真 2.5.1-14 No.2 X90-5-5S-E 試験体のねじれなし

### 2.5.2. X90-5-5W-N, X90-5-5W-E

荷重変位曲線を図 2.5.2-1 に、包絡線を図 2.5.2-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 2.5.2-1 及び表 2.5.1-2 に、破壊性状を写真 2.5.2-1~写真 2.5.2-8 に示 す。X90-5-5-W-N では試験体のねじれがみられたが、振れ止めを設けた X90-5-5-W-E 試験で は手前側と奥側で均等に変位が進んだ。ビス頭の浮きが見られた。



図 2.5.2-1 荷重変位曲線(ビス 1 本あたり)

図 2.5.2-2 包絡線(ビス1本あたり)

表 2.5.2-1 X90-5-5S-N(振れ止め無し) 完全弾塑性モデルによる評価(1 試験体あたり(ビス 8 本))

|                | X90-5-5W | 亚均荷   |
|----------------|----------|-------|
| 項目             | Ν        | 十岁间   |
| 1/10Pm (kN)    | 8.4      | 8.4   |
| 1/10 δ m (mm)  | 0.12     | 0.12  |
| 2/5Pm (kN)     | 33.4     | 33.4  |
| 2/5δm (mm)     | 0.69     | 0.69  |
| 2/3Pm (kN)     | 55.7     | 55.7  |
| 2/3δm (mm)     | 1.32     | 1.32  |
| 9/10Pm (kN)    | 75.2     | 75.2  |
| 9/10 δ m (mm)  | 2.14     | 2.14  |
| Pm (kN)        | 83.5     | 83.5  |
| δ m (mm)       | 3.67     | 3.67  |
| δu時荷重(kN)      | 66.8     | 66.8  |
| δu (mm)        | 5.90     | 5.90  |
| 降伏耐力 Py (kN)   | 45.1     | 45.1  |
| δy (mm)        | 1.00     | 1.00  |
| 終局耐力 Pu (kN)   | 77.3     | 77.3  |
| 初期剛性 K (kN/mm) | 45.10    | 45.10 |
| 降伏点変位 δv(mm)   | 1.71     | 1.71  |
| 塑性率 μ=δu/δv    | 3.45     | 3.45  |
| 構造特性係数 Ds      | 0.41     | 0.41  |

| <u>X90-5-5W-E</u> 包絡線      | から算出  | した各種  | [特性値(  | 試験体1  | 体あたり) | )     |       |      |       |       |      |
|----------------------------|-------|-------|--------|-------|-------|-------|-------|------|-------|-------|------|
| 試験体記号                      |       |       | X90-5- | -5W-E |       |       | 亚坎荷   | 插滩庐主 | 亦動反粉  | ばらつき  | 5%   |
| 項目                         | 1     | 2     | 3      | 4     | 5     | 6     | 平均旭   | 惊毕倆左 | 发到你奴  | 係数    | 下限值  |
| 1/10Pm (kN)                | 9.3   | 9.6   | 9.7    | 9.6   | 8.4   | 9.5   | 9.4   | 0.48 |       |       |      |
| $1/10 \ \delta \ m \ (mm)$ | 0.15  | 0.14  | 0.11   | 0.15  | 0.13  | 0.16  | 0.14  | 0.02 |       |       |      |
| 2/5Pm (kN)                 | 37.4  | 38.6  | 38.8   | 38.5  | 33.8  | 38.0  | 37.5  | 1.89 |       |       |      |
| 2/5 δ m (mm)               | 0.83  | 0.81  | 0.77   | 0.84  | 0.76  | 0.86  | 0.81  | 0.04 |       |       |      |
| 2/3Pm (kN)                 | 62.3  | 64.3  | 64.6   | 64.2  | 56.3  | 63.3  | 62.5  | 3.15 | 0.050 | 0.883 | 55.1 |
| 2/3 δ m (mm)               | 1.65  | 1.60  | 1.49   | 1.65  | 1.42  | 1.66  | 1.58  | 0.10 |       |       |      |
| 9/10Pm (kN)                | 84.1  | 86.8  | 87.3   | 86.6  | 76.0  | 85.4  | 84.4  | 4.26 |       |       |      |
| 9/10 δ m (mm)              | 2.94  | 2.91  | 2.73   | 3.03  | 2.38  | 2.96  | 2.83  | 0.24 |       |       |      |
| Pm (kN)                    | 93.5  | 96.4  | 97.0   | 96.3  | 84.4  | 94.9  | 93.8  | 4.75 |       |       |      |
| δ m (mm)                   | 5.60  | 4.00  | 3.70   | 4.80  | 3.70  | 4.40  | 4.37  | 0.74 |       |       |      |
| δu時荷重 (kN)                 | 74.8  | 83.7  | 87.1   | 83.6  | 73.5  | 75.9  | 79.8  | 5.71 |       |       |      |
| δu (mm)                    | 9.21  | 9.00  | 9.00   | 12.00 | 12.00 | 11.67 | 10.48 | 1.55 |       |       |      |
| 降伏耐力 Py (kN)               | 55.0  | 56.0  | 57.2   | 57.4  | 53.6  | 56.3  | 55.9  | 1.43 | 0.026 | 0.939 | 52.4 |
| δy (mm)                    | 1.32  | 1.28  | 1.23   | 1.35  | 1.28  | 1.40  | 1.31  | 0.06 |       |       |      |
| 終局耐力 Pu (kN)               | 86.7  | 89.2  | 87.5   | 88.9  | 80.3  | 86.6  | 86.5  | 3.24 | 0.037 | 0.914 | 79.0 |
| 初期剛性 K (kN/mm)             | 41.67 | 43.75 | 46.50  | 42.52 | 41.88 | 40.21 | 42.76 | 2.17 |       |       |      |
| 降伏点変位 δv(mm)               | 2.08  | 2.04  | 1.88   | 2.09  | 1.92  | 2.15  | 2.03  | 0.11 |       |       |      |
| 塑性率 μ=δu/δv                | 4.43  | 4.41  | 4.79   | 5.74  | 6.25  | 5.43  | 5.18  | 0.75 |       |       |      |
| 構造特性係数 Ds                  | 0.36  | 0.36  | 0.34   | 0.31  | 0.29  | 0.32  | 0.33  | 0.03 |       |       |      |

表 2.5.2-2 X90-5-5S-E (振れ止め有り) 完全弾塑性モデルによる評価(1 試験体あたり(ビス 8 本))

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 2.5.2-1 NO.3 X90-5-5W-E-1 試験前



写真 2.5.2-2 NO.3 X90-5-5W-E-1 試験後



写真 2.5.2-3 NO.3 X90-5-5W-E-1 試験後ビス頭の浮き



写真 2.5.2-4 NO.3 X90-5-5W-E-2 試験後ビス頭の浮き



写真 2.5.2-5 NO.3 X90-5-5W-E-3 試験後



写真 2.5.2-6 NO.3 X90-5-5W-E-4 試験後



写真 2.5.2-7 No.4 X90-5-5W-N 試験後



写真 2.5.2-8 No.4 X90-5-5W-N 試験体のねじれ

### 2.6. 考察

ビス1本あたりの特性値を比較したものを図2.6-1~図2.6-4に示す。

- ・振れ止めは有った方が降伏耐力及び終局耐力が高くなる傾向にありそうだが、断言できるほどの違いは無い。
- ・振れ止めの有無に関係なく、降伏耐力及び終局耐力は、弱軸試験体の方が高い傾向にある。
- ・上記より若干実態より低い評価になってしまう可能性があるが、強軸試験体については No.1の振れ止めが無い仕様、弱軸試験体については No.4の振れ止めがある仕様として 評価したい。



# 3. 壁-床接合 ビス接合の面内せん断試験

### 3.1. 試験の目的

昨年度試験では、写真 3.1-1 のとおり、いくつかの試験体では最大耐力時に割れが発生 したことから、耐力がばらつき、想定する性能を下回ってしまった。

結果として、想定する目標耐力に届かなかったため、接合方法を見直し、再試験を実施 することとした。



写真 3.1-1 昨年度試験結果

接合方法は、施工難易度は上がってしまうが、図 3.2-1 のとおり斜め打ち接合(45 度)

#### 3.2. 検討方針



想定する CLT 厚さ別の接合方法は図 3.2-2 のとおりである(図は斜め打ち接合 45 度の例)。

ルート1で一般に使用される3層3プライと5層5プライを組み合わせている。このうち 試験を行う仕様は、安全側として赤囲いの仕様とする。



図 3.2-2 想定する CLT パネル厚の組み合わせ

#### 3.3. 一次試験の内容

#### (1)試験の種類

本年度試験では、まず1次試験として表 3.3-1のとおりの試験を行い、施工性の確認と強 度性能のあたりを付けることとしたい。

残材利用として床パネルを想定した側材に5層5プライのCLTパネルを使用するため、 壁パネル側からビスを打ち込み、3層3プライと同一のビス埋め込み深さとなるように調整 した(図 3.3-1)。

試験体図を図 3.3-2~図 3.3-4 に示す。

| 通  |                               |                     | 接合具の種類           |     |                                   |    | ≕⇒転       |            |                |      |       |
|----|-------------------------------|---------------------|------------------|-----|-----------------------------------|----|-----------|------------|----------------|------|-------|
| L  | 試驗休記是                         | CITの樹種/笙            | 壁パネル             |     | 床パネル                              |    |           | 山汉         | 接合具            | レッチ  | 武殿    |
| 番  | 마시에 저 [수가 미니 '그               | & /構成方法             | 層構成              | 加力方 | 1力方 層構成                           |    | 名称        | т<br>d(mm) | 長さ             | (mm) | (体)   |
| 号  |                               | 顺/ 再成力压             | (厚さ)             | 向   | (厚さ)                              | 向  |           | u (mm)     | l(mm)          |      | (1+1) |
| 1  | 予 斜め@50                       |                     |                  |     | 5層5プライ                            |    |           |            | 220            | 50   | 1     |
| 2  | 予 斜め@40                       | スギCLT/<br>Mx60/A種構成 | 3層3プライ<br>(90mm) | 弱軸  | (150mm)ただ<br>し、3層3プライ<br>を想定した接合方 | 強軸 | 全ねじ<br>ビス | 9          | 220            | 40   | 1     |
| 3  | 3<br><sup>予</sup> 斜め直角<br>@40 |                     |                  |     | 法                                 |    |           |            | 斜め220<br>直角260 | 40   | 1     |
| 승計 |                               |                     |                  |     |                                   |    |           |            |                |      | 3     |

表 3.3-1 一次試験の種類

ヘクサビュラ穴付きタッピンねじHTS9-220



<u>本来の仕様</u>

^クサビュラ穴付きタッピンねじHTS9-220



残材(5層5プライ)で代用するため、

壁側からビスを打つ

→埋め込み長さは同じ

図 3.3-1 5 層 5 プライの残材を活用した試験体の施工方法











図 3.3-4 No.3 予 斜め直角@40 試験体図





図 3.3-3 No.2 予 斜め@40 試験体図

(2) 試験結果

No.1~3の荷重変位曲線を図 3.3-5 に、特性値を比較したものを表 3.3-2 に、破壊性状を 写真 3.3-1~写真 3.3-8 に示す。

いずれの接合部仕様においても、加力方向に対するビス軸方向の向きは直角であるにも関わらず、特性に差異が見られた。

No.3 試験体が変位に応じてなだらかに荷重増加が減少していくのに対し、No.1,2は早期に塑性化し、20 mmあたりからロープ効果によって荷重上昇していく特性が見られた。

また No.1,2 は塑性化が早いため、第3象限の荷重が上がらない結果となった。

以上より、本試験は、No.3 試験体の仕様を採用したい。





|                             | No.1    | No.2    | No.3    |
|-----------------------------|---------|---------|---------|
| Pmax                        | 73.89   | 69.52   | 63.44   |
| D(Pmax)                     | 48      | 48.05   | 48.05   |
| 二直線の交点Py                    | 31.2834 | 31.0921 | 33.4419 |
| D(0.8Pmax):δu               | 48      | 60.68   | 64.02   |
| 初期剛性K                       | 3.30146 | 2.64527 | 3.77867 |
| Pu                          | 53.897  | 52.3293 | 54.5935 |
| D(Pu):δv                    | 16.3252 | 19.7822 | 14.4478 |
| $\mu = \delta u / \delta v$ | 2.94024 | 3.0674  | 4.43112 |

表 3.3-2 予備試験の特性値の比較



写真 3.3-1 No.1 予 斜め@50 試験の様子



写真 3.3-3 No.1 予 斜め@50 木材の支圧



写真 3.3-2 No.1 予 斜め@50 ビスの曲げ、木材の支圧



写真 3.3-4 No.2 予 斜め@40 ビスの曲げ、木材の支圧



写真 3.3-5 No.2 予 斜め@40 ビスの曲げ、木材の支圧



写真 3.3-6 No.2 予 斜め@40 ビスの曲げ、木材の支圧





写真 3.3-7 No.3 予 斜め直角@40

写真 3.3-8 No.3 予 斜め直角@40

# 3.4. 二次試験(本試験)の種類

3.3 項の一次試験の結果を踏まえ、二次試験(本試験)の種類は、表 3.4-1 のとおりとした。

| 通         CLTの種類         接合具の種類 |                |             |        |       |        |     |     |             | 重類    | 計酴           |
|---------------------------------|----------------|-------------|--------|-------|--------|-----|-----|-------------|-------|--------------|
| しし試験体記号                         |                | CI Tの樹種 / 笶 | 壁パネル   |       | 床パネル   |     |     | 山径          | 接合具   | 休数           |
| 番                               | 12/02/14-10-13 | 級/構成方法      | 層構成    | 加力方   | 層構成    | 加力方 | 名称  | ыт<br>d(mm) | 長さ    | /+·xx<br>(体) |
| 号                               |                |             | (厚さ)   | 向     | (厚さ)   | 向   |     | G (mm)      | l(mm) | (1+7         |
| 1                               | ⊭33S-33S       |             |        | 注軸≫   |        | 強軸  |     |             |       | 6            |
| 2                               | ⊭33S-33W       | スギCLT/      | 3層3プライ | 四阳水   | 3層3プライ | 弱軸  | 全ねじ | 0           | 220   | 6            |
| 3                               | ↓33W-33S       | Mx60/A種構成   | (90mm) | 22 84 | (90mm) | 強軸  | ビス  | 9           | 220   | 6            |
| 4                               | ⊭33W-33W       |             |        | 习习 半田 |        | 弱軸  |     |             |       | 6            |
| 승탉                              |                |             |        |       |        |     |     |             |       | 24           |

表 3.4-1 面内せん断試験(本試験)



<u>33</u>

壁 CLT の層構成

S

33

<u>S</u>

 D
 DO

 壁の強軸・弱軸
 床 CLT の層構成

床の強軸・弱軸

斜め+直角打ち

ビスの打ち方

### 3.5. 試験体仕様

#### (1) ビスの仕様

当該試験で使用した長ビスは図 3.5-1 のとおりである。長ビスは全て全ねじであり、寸法規格は呼び径  $\varphi$ 9 mm、ビス長さ L=220 mmである。



#### (2) 試験体仕様

各試験体図を図 3.5-2~図 3.5-5 に、試験体の密度と含水率を表 3.5-1 に示す。本試験で は床パネル材として 3 層 3 プライを用いるので、床パネル側からビス打ちを行うこととし た。各試験においては CLT 相互の間にテフロンシートを挿入し、また主材及び側材端部 を R10 に加工することで、極力摩擦が生じないように配慮した。



# 表 3.5-1 密度と含水率

No.1 V 33S-33S

#### 省及 含水率(%) 質量 構成 No. $(g/cm^3)$ 平均 (kg) 2 1 3 側材 R(DG1/2) 7.5 8.3 7.7 7.8 4.78 0.39 1 側材 L(DG3/4) 8.3 8.5 8.5 4.88 0.40 8.8 主材 10.0 10.74 0.43 8.4 8.8 9.1 -9.5 側材 R(DG1/2) 9.2 8.7 9.1 4.74 0.39 2 側材 L(DG3/4) 8.6 9.5 9.4 9.2 4.72 0.39 主材 \_ 9.7 9.9 9.5 9.7 10.720.43側材 R(DG1/2) 9.6 9.4 9.8 9.6 5.06 0.42 3 側材 L(DG3/4) 10.0 8.9 9.7 9.5 4.980.41 主材 \_ 10.2 9.2 9.5 9.6 10.20 0.40 側材 R(DG1/2) 9.3 4.96 0.41 9.2 9.4 9.4 4 側材 L(DG3/4) 4.96 9.7 9.7 9.2 9.5 0.410.39 主材 8.6 9.8 9.1 9.2 9.88 -側材 R(DG1/2)9.1 9.4 9.4 9.3 4.66 0.38 5 側材 9.2 0.39 L(DG3/4) 9.4 9.3 8.9 4.74主材 -8.9 9.2 8.7 8.9 10.20 0.40 側材 R(DG1/2) 9.1 8.6 10.0 9.2 0.40 4.92 6 側材 L(DG3/4) 9.0 8.6 9.2 8.9 4.94 0.41 9.7 9.0 8.3 9.0 10.26 0.41 主材 -

#### No.2 1 33S-33W

| No. | 推出 |          |      | 含水率  | 質量   | 省 度<br>( ) 3 |       |       |
|-----|----|----------|------|------|------|--------------|-------|-------|
|     |    | 伸成       | 1    | 2    | 2 3  |              | (kg)  | (g/cm |
|     | 側材 | R(DG1/2) | 11.7 | 10.1 | 8.9  | 10.2         | 4.82  | 0.40  |
| 1   | 側材 | L(DG3/4) | 9.0  | 9.6  | 9.4  | 9.3          | 4.98  | 0.41  |
|     | 主材 | -        | 8.4  | 8.5  | 9.1  | 8.7          | 10.18 | 0.40  |
|     | 側材 | R(DG1/2) | 11.4 | 10.4 | 9.4  | 10.4         | 4.84  | 0.40  |
| 2   | 側材 | L(DG3/4) | 9.0  | 8.8  | 9.0  | 8.9          | 5.18  | 0.43  |
|     | 主材 | -        | 9.4  | 9.4  | 8.5  | 9.1          | 9.92  | 0.39  |
|     | 側材 | R(DG1/2) | 10.2 | 9.5  | 8.8  | 9.5          | 5.14  | 0.42  |
| 3   | 側材 | L(DG3/4) | 9.4  | 1.2  | 9.5  | 6.7          | 4.98  | 0.41  |
|     | 主材 | -        | 8.7  | 8.6  | 9.4  | 8.9          | 10.22 | 0.41  |
|     | 側材 | R(DG1/2) | 8.9  | 9.3  | 9.3  | 9.2          | 4.98  | 0.41  |
| 4   | 側材 | L(DG3/4) | 8.8  | 9.5  | 8.7  | 9.0          | 5.12  | 0.42  |
|     | 主材 | -        | 9.1  | 9.5  | 9.4  | 9.3          | 10.12 | 0.40  |
|     | 側材 | R(DG1/2) | 9.7  | 10.1 | 9.0  | 9.6          | 5.16  | 0.42  |
| 5   | 側材 | L(DG3/4) | 9.2  | 9.0  | 8.7  | 9.0          | 5.34  | 0.44  |
|     | 主材 | -        | 8.1  | 10.2 | 10.2 | 9.5          | 10.32 | 0.41  |
| 6   | 側材 | R(DG1/2) | 9.4  | 9.1  | 9.2  | 9.2          | 5.20  | 0.43  |
|     | 側材 | L(DG3/4) | 8.8  | 8.7  | 9.4  | 9.0          | 4.88  | 0.40  |
|     | 主材 | -        | 9.6  | 11.5 | 9.6  | 10.2         | 10.50 | 0.42  |

#### No.3 1 33W-33S

|     | L##15 |          |      | 含水率  | 質量   | 省皮,  |       |        |
|-----|-------|----------|------|------|------|------|-------|--------|
| No. |       | 構成       | 1    | 2    | 3    | 平均   | (kg)  | (g/cm° |
|     | 側材    | R(DG1/2) | 9.0  | 9.2  | 9.2  | 9.1  | 4.74  | 0.39   |
| 1   | 側材    | L(DG3/4) | 8.8  | 8.8  | 9.5  | 9.0  | 4.86  | 0.40   |
|     | 主材    | -        | 9.4  | 9.4  | 9.6  | 9.5  | 10.82 | 0.43   |
|     | 側材    | R(DG1/2) | 8.4  | 9.7  | 8.4  | 8.8  | 4.98  | 0.41   |
| 2   | 側材    | L(DG3/4) | 10.6 | 10.2 | 9.5  | 10.1 | 4.98  | 0.41   |
|     | 主材    | -        | 10.0 | 10.1 | 9.3  | 9.8  | 10.56 | 0.42   |
|     | 側材    | R(DG1/2) | 9.1  | 8.8  | 9.0  | 9.0  | 4.80  | 0.40   |
| 3   | 側材    | L(DG3/4) | 9.1  | 8.4  | 9.3  | 8.9  | 4.88  | 0.40   |
|     | 主材    | -        | 9.1  | 8.8  | 9.3  | 9.1  | 10.16 | 0.40   |
|     | 側材    | R(DG1/2) | 9.5  | 8.2  | 9.4  | 9.0  | 4.82  | 0.40   |
| 4   | 側材    | L(DG3/4) | 10.5 | 9.2  | 9.1  | 9.6  | 5.14  | 0.42   |
|     | 主材    | -        | 8.7  | 9.0  | 10.3 | 9.3  | 9.92  | 0.39   |
|     | 側材    | R(DG1/2) | 8.8  | 9.3  | 9.0  | 9.0  | 5.04  | 0.41   |
| 5   | 側材    | L(DG3/4) | 9.7  | 9.0  | 9.0  | 9.2  | 4.88  | 0.40   |
|     | 主材    | -        | 9.6  | 9.6  | 9.1  | 9.4  | 10.60 | 0.42   |
|     | 側材    | R(DG1/2) | 9.7  | 9.3  | 9.1  | 9.4  | 4.90  | 0.40   |
| 6   | 側材    | L(DG3/4) | 8.1  | 9.2  | 8.6  | 8.6  | 5.18  | 0.43   |
|     | 主材    | -        | 8.8  | 10.0 | 7.8  | 8.9  | 10.16 | 0.40   |

| No.4 | V | 33W | -33W |
|------|---|-----|------|
|      |   | 00  | 0011 |

| N   | 推卍 |            |      | 含水率  | 質量   | 省度   |       |        |  |
|-----|----|------------|------|------|------|------|-------|--------|--|
| NO. |    | <b>博</b> 成 | 1    | 2    | 3    | 平均   | (kg)  | (g/cm° |  |
|     | 側材 | R(DG1/2)   | 9.2  | 11.6 | 10.8 | 10.5 | 4.82  | 0.40   |  |
| 1   | 側材 | L(DG3/4)   | 9.1  | 9.4  | 9.2  | 9.2  | 5.20  | 0.43   |  |
|     | 主材 | -          | 9.2  | 9.2  | 9.2  | 9.2  | 10.32 | 0.41   |  |
|     | 側材 | R(DG1/2)   | 9.1  | 8.8  | 10.2 | 9.4  | 5.16  | 0.42   |  |
| 2   | 側材 | L(DG3/4)   | 9.0  | 10.2 | 10.5 | 9.9  | 5.28  | 0.43   |  |
|     | 主材 | -          | 9.4  | 9.5  | 10.2 | 9.7  | 10.36 | 0.41   |  |
|     | 側材 | R(DG1/2)   | 11.9 | 9.7  | 9.2  | 10.3 | 4.82  | 0.40   |  |
| 3   | 側材 | L(DG3/4)   | 8.9  | 8.8  | 8.4  | 8.7  | 4.92  | 0.40   |  |
|     | 主材 | -          | 10.3 | 10.3 | 8.9  | 9.8  | 10.16 | 0.40   |  |
|     | 側材 | R(DG1/2)   | 10.4 | 8.6  | 9.8  | 9.6  | 4.88  | 0.40   |  |
| 4   | 側材 | L(DG3/4)   | 10.8 | 9.3  | 9.3  | 9.8  | 4.82  | 0.40   |  |
|     | 主材 | -          | 9.3  | 8.6  | 9.0  | 9.0  | 10.14 | 0.40   |  |
|     | 側材 | R(DG1/2)   | 9.0  | 8.8  | 8.5  | 8.8  | 5.20  | 0.43   |  |
| 5   | 側材 | L(DG3/4)   | 9.0  | 8.6  | 8.3  | 8.6  | 5.22  | 0.43   |  |
|     | 主材 | -          | 9.1  | 8.6  | 8.8  | 8.8  | 10.62 | 0.42   |  |
|     | 側材 | R(DG1/2)   | 10.6 | 9.0  | 9.9  | 9.8  | 4.94  | 0.41   |  |
| 6   | 側材 | L (DG3/4)  | 9.0  | 9.4  | 8.8  | 9.1  | 5.28  | 0.43   |  |
|     | 主材 | -          | 8.0  | 12.0 | 9.4  | 9.8  | 10.30 | 0.41   |  |

### 3.6. 試験方法、評価方法

試験方法は写真 3.6-1 のとおりである。

試験体の主材は面外方向の変形をサポート治具で押え、側材は面内方向の開きや浮き上が りをロッドやストッパで押さえる試験とした。加力方法は、単調加力試験の*δ*<sub>y</sub>の

1/2,1,2,4,6,8,12,16 倍の順で正負交番加力方向繰り返し加力として引張で破壊させるものとした。変位は CLT 相互の相対変位をワイヤー式の変位計で計測した。

評価方法は完全弾塑性モデルによる評価とし、信頼水準 75%における 95%下側許容限界値 として評価を行った。



写真 3.6-1 試験方法

# 3.7. 試験結果

### 3.7.1. V 33S-33S

荷重変位曲線を図 3.7.1-1 に、包絡線を図 3.7.1-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 3.7.1-1 に、破壊性状を写真 3.7.1-1~写真 3.7.1-12 に示す。CLT の割 裂、木材の支圧、ビスの折損が確認された。



# 図 3.7.1-1 荷重変位曲線(ビス 1 本あたり) 図 3.7.1-2 包絡線 (ビス 1 本あたり) 表 3.7.1-1 完全弾塑性モデルによる評価(1 試験体あたり (ビス 8 本分))

| 試験体記号          | V33S  |       |       | -33S  |       |       | 亚坎荷   | 插滩佰羊 | 亦動反粉  | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 悰凖惼左 | 変動係数  | 係数    | 下限值  |
| 1/10Pm (kN)    | 5.5   | 6.1   | 6.6   | 6.5   | 5.9   | 6.8   | 6.2   | 0.49 |       |       |      |
| 1/10 δ m (mm)  | 0.30  | 0.49  | 0.45  | 0.39  | 0.66  | 0.62  | 0.49  | 0.14 |       |       |      |
| 2/5Pm (kN)     | 22.0  | 24.4  | 26.4  | 26.0  | 23.7  | 27.2  | 25.0  | 1.94 |       |       |      |
| 2/5 δ m (mm)   | 3.25  | 3.87  | 4.80  | 3.93  | 3.95  | 5.08  | 4.15  | 0.67 |       |       |      |
| 2/3Pm (kN)     | 36.7  | 40.7  | 44.1  | 43.3  | 39.5  | 45.4  | 41.6  | 3.25 | 0.078 | 0.818 | 34.0 |
| 2/3 δ m (mm)   | 11.33 | 12.81 | 14.51 | 13.15 | 12.82 | 14.64 | 13.21 | 1.23 |       |       |      |
| 9/10Pm (kN)    | 49.5  | 55.0  | 59.5  | 58.5  | 53.4  | 61.3  | 56.2  | 4.39 |       |       |      |
| 9/10 δ m (mm)  | 21.36 | 22.56 | 23.92 | 22.38 | 22.66 | 24.31 | 22.87 | 1.08 |       |       |      |
| Pm (kN)        | 55.0  | 61.1  | 66.1  | 65.0  | 59.3  | 68.1  | 62.4  | 4.88 |       |       |      |
| δ m (mm)       | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00 |       |       |      |
| δu時荷重 (kN)     | 55.0  | 61.1  | 66.1  | 65.0  | 59.3  | 68.1  | 62.4  | 4.88 |       |       |      |
| δu (mm)        | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00 |       |       |      |
| 降伏耐力 Py (kN)   | 25.7  | 27.6  | 28.5  | 28.6  | 26.8  | 29.4  | 27.8  | 1.35 | 0.049 | 0.886 | 24.6 |
| δy (mm)        | 4.71  | 5.00  | 5.62  | 4.93  | 5.16  | 5.96  | 5.23  | 0.47 |       |       |      |
| 終局耐力 Pu (kN)   | 45.9  | 49.4  | 52.3  | 52.4  | 47.9  | 54.0  | 50.3  | 3.10 | 0.062 | 0.855 | 43.0 |
| 初期剛性 K (kN/mm) | 5.46  | 5.52  | 5.07  | 5.80  | 5.19  | 4.93  | 5.33  | 0.32 |       |       |      |
| 降伏点変位 δv(mm)   | 8.41  | 8.95  | 10.32 | 9.03  | 9.23  | 10.95 | 9.48  | 0.95 |       |       |      |
| 塑性率 μ=δu/δv    | 3.57  | 3.35  | 2.91  | 3.32  | 3.25  | 2.74  | 3.19  | 0.31 |       |       |      |
| 構造特性係数 Ds      | 0.40  | 0.42  | 0.46  | 0.42  | 0.43  | 0.47  | 0.43  | 0.03 |       |       |      |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 3.7.1-1 NO.1 233S-33S-1 試験前



写真 3.7.1-3 NO.1 1 33S-33S-1 試験後



写真 3.7.1-2 NO.1 1 33S-33S-1 試験前



写真 3.7.1-4 NO.1 レ 33S-33S-1 側材の割裂



写真 3.7.1-5 NO.1 レ 33S-33S-1 木材の支圧



写真 3.7.1-6 NO.1 レ 33S-33S-1 CLT の割裂



写真 3.7.1-7 NO.1 レ 33S-33S-2 木材の支圧



写真 3.7.1-8 NO.1 レ 33S-33S-3 木材の支圧



写真 3.7.1-9 NO.1 レ 33S-33S-4 木材の支圧



写真 3.7.1-11 NO.1 レ 33S-33S-5 ビスの折損、木材の支圧



写真 3.7.1-10 NO.1 レ 33S-33S-4 ビスの折損、木材の支圧



写真 3.7.1-12 NO.1 レ 33S-33S-6 ビスの折損、木材の支圧
#### 3.7.2. V 33S-33W

荷重変位曲線を図 3.7.2-1 に、包絡線を図 3.7.2-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 3.7.2-1 に、破壊性状を写真 3.7.2-1~写真 3.7.2-12 に示す。CLT の割 裂、木材の支圧、ビスの折損が確認された。



## 図 3.7.2-1 荷重変位曲線(ビス1本あたり) 図 3.7.2-2 包絡線(ビス1本あたり) 表 3.7.2-1 完全弾塑性モデルによる評価(1試験体あたり(ビス8本分))

| 試験体記号                      |       |       | ₽33S- | -33W  |       |       | 亚坎萨   | 插滩信兰 | 赤動反粉  | ばらつき  | 5%   |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|
| 項目                         | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 惊华怖左 | 変動係数  | 係数    | 下限值  |
| 1/10Pm (kN)                | 5.6   | 6.1   | 6.0   | 5.7   | 6.4   | 6.0   | 6.0   | 0.29 |       |       |      |
| $1/10 \ \delta \ m \ (mm)$ | 0.32  | 0.37  | 0.38  | 0.31  | 0.35  | 0.47  | 0.37  | 0.06 |       |       |      |
| 2/5Pm (kN)                 | 22.4  | 24.4  | 24.1  | 23.0  | 25.7  | 23.9  | 23.9  | 1.15 |       |       |      |
| 2/5 δ m (mm)               | 3.25  | 4.50  | 4.18  | 3.69  | 4.24  | 4.57  | 4.07  | 0.51 |       | -     |      |
| 2/3Pm (kN)                 | 37.3  | 40.6  | 40.1  | 38.3  | 42.8  | 39.8  | 39.8  | 1.91 | 0.048 | 0.888 | 35.3 |
| 2/3 δ m (mm)               | 9.95  | 12.72 | 12.39 | 12.27 | 12.43 | 13.41 | 12.20 | 1.17 |       |       |      |
| 9/10Pm (kN)                | 50.3  | 54.8  | 54.2  | 51.7  | 57.8  | 53.7  | 53.8  | 2.60 |       |       |      |
| 9/10 δ m (mm)              | 19.25 | 23.00 | 22.52 | 22.05 | 21.70 | 22.79 | 21.89 | 1.38 |       |       |      |
| Pm (kN)                    | 55.9  | 60.9  | 60.2  | 57.4  | 64.2  | 59.7  | 59.7  | 2.89 |       |       |      |
| δ m (mm)                   | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00 |       |       |      |
| δu時荷重 (kN)                 | 55.9  | 60.9  | 60.2  | 57.4  | 64.2  | 59.7  | 59.7  | 2.89 |       |       |      |
| δu (mm)                    | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00 |       |       |      |
| 降伏耐力 Py (kN)               | 27.7  | 29.2  | 28.7  | 26.0  | 29.8  | 26.7  | 28.0  | 1.48 | 0.053 | 0.876 | 24.5 |
| δy (mm)                    | 5.13  | 6.66  | 6.10  | 4.90  | 5.88  | 5.68  | 5.73  | 0.64 |       |       |      |
| 終局耐力 Pu (kN)               | 49.1  | 51.3  | 50.8  | 47.1  | 54.5  | 48.6  | 50.2  | 2.59 | 0.052 | 0.879 | 44.1 |
| 初期剛性 K (kN/mm)             | 5.40  | 4.38  | 4.70  | 5.31  | 5.07  | 4.70  | 4.93  | 0.40 |       |       |      |
| 降伏点変位 δv(mm)               | 9.09  | 11.71 | 10.81 | 8.87  | 10.75 | 10.34 | 10.26 | 1.09 |       |       |      |
| 塑性率 μ=δu/δv                | 3.30  | 2.56  | 2.78  | 3.38  | 2.79  | 2.90  | 2.95  | 0.32 |       |       |      |
| 構造特性係数 Ds                  | 0.42  | 0.49  | 0.47  | 0.42  | 0.47  | 0.46  | 0.46  | 0.03 |       |       |      |

レ33S-33W 包絡線から算出した各種特性値(試験体1体あたり)

1/10Pm;0.1Pmax時の荷重

1/10 δ m;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 3.7.2-1 NO.2 2 33S-33W-1 試験前



写真 3.7.2-2 NO.2 2 33S-33W-1 試験前



写真 3.7.2-3 NO.2 レ 33S-33W-1 試験後





写真 3.7.2-5 NO.2 レ 33S-33W-1 写真 3.7.2-6 木材の支圧 オ

写真 3.7.2-4 NO.2 2 33S-33W-1 試験後



写真 3.7.2-6 NO.2 レ 33S-33W-1 木材の支圧







写真 3.7.2-8 NO.2 レ 33S-33W-3 木材の支圧



写真 3.7.2-9 NO.2 レ33S-33W-3 木材の割れ



写真 3.7.2-10 NO.2 レ33S-33W-4 押しぬきせん断



写真 3.7.2-11 NO.2 ↓ 33S-33W-5 木材の支圧、ビスの折損



写真 3.7.2-12 NO.2 レ 33S-33W-6 木材の支圧、ビスの折損

#### 3.7.3. V 33W-33S

荷重変位曲線を図 3.7.3-1 に、包絡線を図 3.7.3-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 3.7.3-1 に、破壊性状を写真 3.7.3-1~写真 3.7.3-12 に示す。CLT の割 裂、木材の支圧、ビスの折損が確認された。



# 図 3.7.3-1 荷重変位曲線(ビス1本あたり) 図 3.7.3-2 包絡線(ビス1本あたり) 表 3.7.3-1 完全弾塑性モデルによる評価(1試験体あたり(ビス8本分))

| 試験体記号                      |       |       | ₽33W  | /-33S |       |       | 亚坎荷   | <b>插</b> 滩/同主 | 亦動な粉         | ばらつき  | 5%   |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|---------------|--------------|-------|------|
| 項目                         | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 悰凖憮定          | <b>爱</b> 劉怵毅 | 係数    | 下限值  |
| 1/10Pm (kN)                | 6.7   | 7.7   | 6.6   | 6.8   | 7.0   | 6.9   | 7.0   | 0.39          |              |       |      |
| $1/10 \ \delta \ m \ (mm)$ | 0.38  | 0.59  | 0.46  | 0.53  | 0.50  | 0.50  | 0.49  | 0.07          |              |       |      |
| 2/5Pm (kN)                 | 26.9  | 30.8  | 26.6  | 27.1  | 28.1  | 27.7  | 27.9  | 1.54          |              |       |      |
| 2/5 δ m (mm)               | 3.52  | 4.78  | 4.36  | 4.62  | 3.45  | 4.18  | 4.15  | 0.56          |              |       |      |
| 2/3Pm (kN)                 | 44.9  | 51.3  | 44.3  | 45.2  | 46.9  | 46.2  | 46.5  | 2.54          | 0.055        | 0.872 | 40.5 |
| 2/3 δ m (mm)               | 11.25 | 13.62 | 12.76 | 13.53 | 11.47 | 12.30 | 12.49 | 1.00          |              |       |      |
| 9/10Pm (kN)                | 60.6  | 69.2  | 59.8  | 61.0  | 63.3  | 62.4  | 62.7  | 3.42          |              |       |      |
| 9/10 δ m (mm)              | 19.53 | 22.28 | 21.62 | 22.61 | 19.75 | 19.86 | 20.94 | 1.39          |              |       |      |
| Pm (kN)                    | 67.3  | 76.9  | 66.4  | 67.8  | 70.3  | 69.3  | 69.7  | 3.81          |              |       |      |
| δ m (mm)                   | 24.00 | 30.00 | 30.00 | 30.00 | 29.80 | 24.00 | 27.97 | 3.07          |              |       |      |
| δu時荷重(kN)                  | 66.5  | 76.9  | 66.4  | 67.8  | 70.3  | 67.6  | 69.3  | 4.00          |              |       |      |
| δu (mm)                    | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00          |              |       |      |
| 降伏耐力 Py (kN)               | 30.6  | 34.2  | 29.6  | 30.9  | 31.5  | 29.9  | 31.1  | 1.66          | 0.053        | 0.876 | 27.2 |
| δy (mm)                    | 4.62  | 5.99  | 5.54  | 6.07  | 4.50  | 5.01  | 5.29  | 0.68          |              |       |      |
| 終局耐力 Pu (kN)               | 57.3  | 63.4  | 55.4  | 56.0  | 59.4  | 58.7  | 58.4  | 2.90          | 0.050        | 0.883 | 51.5 |
| 初期剛性 K (kN/mm)             | 6.62  | 5.71  | 5.34  | 5.09  | 7.00  | 5.97  | 5.96  | 0.74          |              |       |      |
| 降伏点変位 δv(mm)               | 8.66  | 11.10 | 10.37 | 11.00 | 8.49  | 9.83  | 9.91  | 1.13          |              |       |      |
| 塑性率 μ=δu/δv                | 3.46  | 2.70  | 2.89  | 2.73  | 3.53  | 3.05  | 3.06  | 0.36          |              |       |      |
| 構造特性係数 Ds                  | 0.41  | 0.48  | 0.46  | 0.47  | 0.41  | 0.44  | 0.45  | 0.03          |              |       |      |

レ33W-33S 包絡線から算出した各種特性値(試験体1体あたり)

1/10Pm;0.1Pmax時の荷重

1/10 δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 3.7.3-1 NO.3 2 33W-33S-1 試験前



写真 3.7.3-2 NO.3 2 33W-33S-1 試験前



写真 3.7.3-3 NO.3 2 33W-33S-1 試験後



写真 3.7.3-4 NO.3 2 33W-33S-1 試験後



写真 3.7.3-5 NO.3 レ 33W-33S-1 木材の支圧



写真 3.7.3-6 NO.3 ↓ 33W-33S-1 木材の支圧、ビスの折損



写真 3.7.3-7 NO.3 ↓ 33W-33S-2 木材の支圧、ビスの折損



写真 3.7.3-8 NO.3 ↓ 33W-33S-3 木材の支圧、ビスの折損



写真 3.7.3-9 NO.3 レ33W-33S-4 木材の支圧、ビスの折損



写真 3.7.3-11 NO.3 ↓ 33W-33S-5 木材の支圧、ビスの折損



写真 3.7.3-10 NO.3 レ 33W-33S-4 木材の支圧、ビスの折損



写真 3.7.3-12 NO.3 レ 33W-33S-6 木材の支圧、ビスの折損

#### 3.7.4. V 33W-33S

荷重変位曲線を図 3.7.4-1 に、包絡線を図 3.7.4-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 3.7.3-1 に、破壊性状を写真 3.7.4-1~写真 3.7.4-12 に示す。CLT の割 裂、木材の支圧、ビスの折損が確認された。



図 3.7.4-1 荷重変位曲線(ビス 1 本あたり) 図 3.7.4-2 包絡線(ビス 1 本あたり) 表 3.7.4-1 完全弾塑性モデルによる評価(1 試験体あたり(ビス 8 本))

| 試験体記号          |       |       | ₽33W  | /-33S |       |       | 亚坎荷   | <b>洒</b> 滩 信主 | 亦動反粉         | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|---------------|--------------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 干均恒   | 惊毕慵定          | <b>发</b> 期怵狱 | 係数    | 下限値  |
| 1/10Pm (kN)    | 6.7   | 8.0   | 6.6   | 5.9   | 7.8   | 7.0   | 7.0   | 0.79          |              |       |      |
| 1/10 δ m (mm)  | 0.46  | 0.48  | 0.40  | 0.32  | 0.44  | 0.54  | 0.44  | 0.07          |              |       |      |
| 2/5Pm (kN)     | 26.8  | 32.1  | 26.2  | 23.5  | 31.1  | 28.0  | 28.0  | 3.20          |              |       |      |
| 2/5 δ m (mm)   | 4.60  | 5.19  | 4.09  | 3.51  | 5.46  | 4.71  | 4.59  | 0.71          |              |       |      |
| 2/3Pm (kN)     | 44.7  | 53.5  | 43.7  | 39.1  | 51.9  | 46.7  | 46.6  | 5.37          | 0.115        | 0.731 | 34.0 |
| 2/3 δ m (mm)   | 12.25 | 12.92 | 11.08 | 10.10 | 14.23 | 12.29 | 12.15 | 1.44          |              |       |      |
| 9/10Pm (kN)    | 60.3  | 72.3  | 59.0  | 52.8  | 70.0  | 63.1  | 62.9  | 7.25          |              |       |      |
| 9/10 δ m (mm)  | 20.81 | 22.04 | 20.19 | 18.57 | 22.95 | 21.07 | 20.94 | 1.51          |              |       |      |
| Pm (kN)        | 67.0  | 80.3  | 65.5  | 58.7  | 77.8  | 70.1  | 69.9  | 8.05          |              |       |      |
| δ m (mm)       | 29.80 | 30.00 | 30.00 | 24.00 | 30.00 | 30.00 | 28.97 | 2.43          |              |       |      |
| δu時荷重 (kN)     | 67.0  | 80.3  | 65.5  | 58.1  | 77.8  | 70.1  | 69.8  | 8.22          |              |       |      |
| δu (mm)        | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00          |              |       |      |
| 降伏耐力 Py (kN)   | 31.8  | 39.1  | 32.1  | 28.4  | 34.9  | 33.5  | 33.3  | 3.58          | 0.108        | 0.748 | 24.9 |
| δy (mm)        | 6.40  | 7.41  | 6.22  | 5.23  | 7.02  | 6.83  | 6.52  | 0.76          |              |       |      |
| 終局耐力 Pu (kN)   | 57.9  | 70.0  | 57.6  | 51.5  | 65.4  | 61.4  | 60.6  | 6.50          | 0.107        | 0.750 | 45.4 |
| 初期剛性 K (kN/mm) | 4.97  | 5.28  | 5.16  | 5.43  | 4.97  | 4.90  | 5.12  | 0.21          |              |       |      |
| 降伏点変位 δv(mm)   | 11.65 | 13.26 | 11.16 | 9.48  | 13.16 | 12.53 | 11.87 | 1.44          |              |       |      |
| 塑性率 μ=δu/δv    | 2.58  | 2.26  | 2.69  | 3.16  | 2.28  | 2.39  | 2.56  | 0.34          |              |       |      |
| 構造特性係数 Ds      | 0.49  | 0.53  | 0.48  | 0.43  | 0.53  | 0.51  | 0.50  | 0.04          |              |       |      |

▶33W-33S 包絡線から算出した各種特性値(試験体1体あたり)

1/10Pm;0.1Pmax時の荷重

1/10 δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 3.7.4-1 NO.4 233W-33W-1 試験前



写真 3.7.4-2 NO.4 1 33W-33W-1 試験前



写真 3.7.4-3 NO.4 1 33W-33W-1 試験後



写真 3.7.4-4 NO.4 1 33W-33W-1 試験後



写真 3.7.4<sup>-4</sup> NO.1 ▷ 33W-33W-1 木材の支圧、ビスの折損



写真 3.7.4-6 NO.4 レ33W-33W-1 木材の支圧、ビスの折損



写真 3.7.4-7 NO.4 *v* 33W-33W-2 木材の支圧、ビスの折損



写真 3.7.4-8 NO.4 b 33W-33W-3 木材の支圧、ビスの折損



写真 3.7.4-9 NO.4 233W-33W-3 木材の支圧、ビスの折損



写真 3.7.4-11 NO.4 レ33W-33W-5 木材の支圧、ビスの折損



写真 3.7.4-10 NO.4 ♭ 33W-33W-4 木材の支圧、ビスの折損



写真 3.7.4-12 NO.4 ↓ 33W-33W-6 木材の支圧、ビスの折損

#### 3.8. 考察

ビス1対あたりの特性値を比較したものを図 3.8-1~図 3.8-4 に示す。

ビス1対とは、図 3.8-5 のとおり、斜めビス1本+直角ビス1本を「1対」としたものであ り、ビス1対として特性値を算出している。

各試験体を比較した結果、以下のことが分かった。

- ・壁 CLT の強軸・弱軸を比較すると強軸試験体の方が終局耐力及び降伏耐力が低い傾向が 見られる。壁の強軸試験体はビスが打ち込まれる部分が木口打ちであるためと思われ る。これは、R5 年度直角打ち試験(「<参考>R5 年度試験」の図 3.8-6~図 3.8-9 を参 照。)でも同じ傾向であった。壁の木口側で破壊が決まるためか、斜めビスの補強効果 か、ばらつきは非常に少ない。
- 初期剛性や塑性率は有意差が認められるほどの違いはなく、ばらつきの範囲と考えられる。
- ・傾向としてどの試験体も破壊性状が変わらず、壁 CLT の強軸/弱軸で特性が決まる傾向 にある。





図 3.8-5 ビス1対の範囲(斜めビス1本+直角ビス1本)

#### <参考>R5年度試験



^クサビュラ穴付きタッピンねじHTS9-200















図 3.8-7 降伏耐力の比較



45

## 3.9. 再評価の結果

3.8 項より、壁 CLT の強軸/弱軸で特性が決まる傾向にあることが分かったため、No.1 と No.2、No.3 と No.4 を 1 試験体シリーズとして結果を再整理した。

### 3.9.1. レ 33S-33S+レ 33S-33W

表 3.9.1-1 のとおり壁強軸試験体 2 仕様 12 体を 1 試験シリーズとして再評価を行った。ビス 1 対あたり 6.90kN となった。

| 表 3.9.1-1 | 完全弾塑性モデルによ | る評価(1試験体あたり | (ビス8本)) |
|-----------|------------|-------------|---------|
|-----------|------------|-------------|---------|

| 50%   | 下限値                                          |             |               |            |              | 40.1       |              |             |               |        |         |             |          | 27.6         |         | 49.7         |                |              |                                 |           |
|-------|----------------------------------------------|-------------|---------------|------------|--------------|------------|--------------|-------------|---------------|--------|---------|-------------|----------|--------------|---------|--------------|----------------|--------------|---------------------------------|-----------|
| ばらしゃ  | 係数                                           |             |               |            |              | 0.987      |              |             |               |        |         |             |          | 0.990        |         | 0.989        |                |              |                                 |           |
| 亦和万米  | <b>炎                                    </b> |             |               |            |              | 0.067      |              |             |               |        |         |             |          | 0.049        |         | 0.054        |                |              |                                 |           |
| 「キョ業単 | 际平価左                                         | 0.41        | 0.12          | 1.61       | 0.57         | 2.71       | 1.26         | 3.67        | 1.29          | 4.08   | 0.00    | 4.08        | 0.00     | 1.36         | 0.60    | 2.72         | 0.40           | 1.06         | 0.32                            | 0.03      |
| 亚村庙   | 十岁順                                          | 6.1         | 0.43          | 24.4       | 4.11         | 40.7       | 12.70        | 55.0        | 22.38         | 61.1   | 30.00   | 61.1        | 30.00    | 27.9         | 5.48    | 50.3         | 5.13           | 9.87         | 3.07                            | 0.44      |
|       | 9                                            | 9           | 0.47          | 23.9       | 4.57         | 39.8       | 13.41        | 53.7        | 22.79         | 59.7   | 30.00   | 59.7        | 30.00    | 26.7         | 5.68    | 48.6         | 4.70           | 10.34        | 2.90                            | 0.46      |
|       | 5                                            | 6.4         | 0.35          | 25.7       | 4.24         | 42.8       | 12.43        | 57.8        | 21.70         | 64.2   | 30.00   | 64.2        | 30.00    | 29.8         | 5.88    | 54.5         | 5.07           | 10.75        | 2.79                            | 0.47      |
| -33W  | 4                                            | 5.7         | 0.31          | 23         | 3.69         | 38.3       | 12.27        | 51.7        | 22.05         | 57.4   | 30.00   | 57.4        | 30.00    | 26           | 4.90    | 47.1         | 5.31           | 8.87         | 3.38                            | 0.42      |
| 133S- | 3                                            | 9           | 0.38          | 24.1       | 4.18         | 40.1       | 12.39        | 54.2        | 22.52         | 60.2   | 30.00   | 60.2        | 30.00    | 28.7         | 6.10    | 50.8         | 4.70           | 10.81        | 2.78                            | 0.47      |
|       | 2                                            | 6.1         | 0.37          | 24.4       | 4.50         | 40.6       | 12.72        | 54.8        | 23.00         | 60.9   | 30.00   | 60.9        | 30.00    | 29.2         | 6.66    | 51.3         | 4.38           | 11.71        | 2.56                            | 0.49      |
|       | 1                                            | 5.6         | 0.32          | 22.4       | 3.25         | 37.3       | 9.95         | 50.3        | 19.25         | 55.9   | 30.00   | 55.9        | 30.00    | 27.7         | 5.13    | 49.1         | 5.40           | 9.09         | 3.30                            | 0.42      |
|       | 9                                            | 6.8         | 0.62          | 27.2       | 5.08         | 45.4       | 14.64        | 61.3        | 24.31         | 68.1   | 30.00   | 68.1        | 30.00    | 29.4         | 5.96    | 54.0         | 4.93           | 10.95        | 2.74                            | 0.47      |
|       | 5                                            | 5.9         | 0.66          | 23.7       | 3.95         | 39.5       | 12.82        | 53.4        | 22.66         | 59.3   | 30.00   | 59.3        | 30.00    | 26.8         | 5.16    | 47.9         | 5.19           | 9.23         | 3.25                            | 0.43      |
| -33S  | 4                                            | 6.5         | 0.39          | 26.0       | 3.93         | 43.3       | 13.15        | 58.5        | 22.38         | 65.0   | 30.00   | 65.0        | 30.00    | 28.6         | 4.93    | 52.4         | 5.80           | 9.03         | 3.32                            | 0.42      |
| 133S- | 3                                            | 6.6         | 0.45          | 26.4       | 4.80         | 44.1       | 14.51        | 59.5        | 23.92         | 66.1   | 30.00   | 66.1        | 30.00    | 28.5         | 5.62    | 52.3         | 5.07           | 10.32        | 2.91                            | 0.46      |
|       | 2                                            | 6.1         | 0.49          | 24.4       | 3.87         | 40.7       | 12.81        | 55.0        | 22.56         | 61.1   | 30.00   | 61.1        | 30.00    | 27.6         | 5.00    | 49.4         | 5.52           | 8.95         | 3.35                            | 0.42      |
|       | 1                                            | 5.5         | 0.30          | 22.0       | 3.25         | 36.7       | 11.33        | 49.5        | 21.36         | 55.0   | 30.00   | 55.0        | 30.00    | 25.7         | 4.71    | 45.9         | 5.46           | 8.41         | 3.57                            | 0.40      |
| 試験体記号 | 通目                                           | ./10Pm (kN) | ./10 & m (mm) | 2/5Pm (kN) | 2/5 d m (mm) | 2/3Pm (kN) | 2/3 δ m (mm) | )/10Pm (kN) | )/10 & m (mm) | m (kN) | δm (mm) | δ u時荷重 (kN) | δ u (mm) | 肇伏耐力 Py (kN) | δy (mm) | 终局耐力 Pu (kN) | 辺期剛性 K (kN/mm) | 锋伏点変位 δv(mm) | 塑性率 $\mu = \delta u / \delta v$ | 青造特性係数 Ds |

## 3.9.2. ↓ 33W-33S+ レ 33W-33W

表 3.9.2-1 のとおり壁弱軸試験体 2 仕様 12 体を、1 試験シリーズとして再評価を行った。 ビス1 対あたり 7.90kN となった。

| 試験体記号                           |       |       | 133S- | -33S  |       |       |       |       | L33W- | -33W  |       |       | 亚州店   | 未回衆囲 | 亦 新坂 粉                                       | ばらつき  | 50%  |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|----------------------------------------------|-------|------|
| 項目                              | 1     | 2     | 3     | 4     | 5     | 9     | 1     | 2     | 3     | 4     | 5     | 6     | 手ど置   | 际半佃五 | <b>炎                                    </b> | 係数    | 下限値  |
| 1/10Pm (kN)                     | 6.7   | 7.7   | 6.6   | 6.8   | 7.0   | 6.9   | 6.7   | 8     | 6.6   | 5.9   | 7.8   | 7     | 7.0   | 0.59 |                                              |       |      |
| 1/10 8 m (mm)                   | 0.38  | 0.59  | 0.46  | 0.53  | 0.50  | 0.50  | 0.46  | 0.48  | 0.40  | 0.32  | 0.44  | 0.54  | 0.47  | 0.07 |                                              |       |      |
| 2/5Pm (kN)                      | 26.9  | 30.8  | 26.6  | 27.1  | 28.1  | 27.7  | 26.8  | 32.1  | 26.2  | 23.5  | 31.1  | 28    | 27.9  | 2.40 |                                              |       |      |
| 2/5 8 m (mm)                    | 3.52  | 4.78  | 4.36  | 4.62  | 3.45  | 4.18  | 4.60  | 5.19  | 4.09  | 3.51  | 5.46  | 4.71  | 4.37  | 0.65 |                                              |       |      |
| 2/3Pm (kN)                      | 44.9  | 51.3  | 44.3  | 45.2  | 46.9  | 46.2  | 44.7  | 53.5  | 43.7  | 39.1  | 51.9  | 46.7  | 46.5  | 4.00 | 0.086                                        | 0.983 | 45.7 |
| 2/3 δ m (mm)                    | 11.25 | 13.62 | 12.76 | 13.53 | 11.47 | 12.30 | 12.25 | 12.92 | 11.08 | 10.10 | 14.23 | 12.29 | 12.32 | 1.19 |                                              |       |      |
| 9/10Pm (kN)                     | 60.6  | 69.2  | 59.8  | 61.0  | 63.3  | 62.4  | 60.3  | 72.3  | 59    | 52.8  | 70    | 63.1  | 62.8  | 5.40 |                                              |       |      |
| 9/10 8 m (mm)                   | 19.53 | 22.28 | 21.62 | 22.61 | 19.75 | 19.86 | 20.81 | 22.04 | 20.19 | 18.57 | 22.95 | 21.07 | 20.94 | 1.38 |                                              |       |      |
| Pm (kN)                         | 67.3  | 76.9  | 66.4  | 67.8  | 70.3  | 69.3  | 67    | 80.3  | 65.5  | 58.7  | 77.8  | 70.1  | 69.8  | 6.00 |                                              |       |      |
| δm (mm)                         | 24.00 | 30.00 | 30.00 | 30.00 | 29.80 | 24.00 | 29.80 | 30.00 | 30.00 | 24.00 | 30.00 | 30.00 | 28.47 | 2.69 |                                              |       |      |
| δu時荷重 (kN)                      | 66.5  | 76.9  | 66.4  | 67.8  | 70.3  | 67.6  | 67    | 80.3  | 65.5  | 58.1  | 77.8  | 70.1  | 69.5  | 6.17 |                                              |       |      |
| δu (mm)                         | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 0.00 |                                              |       |      |
| 降伏耐力 Py (kN)                    | 30.6  | 34.2  | 29.6  | 30.9  | 31.5  | 29.9  | 31.8  | 39.1  | 32.1  | 28.4  | 34.9  | 33.5  | 32.2  | 2.89 | 0.090                                        | 0.982 | 31.6 |
| δy (mm)                         | 4.62  | 5.99  | 5.54  | 6.07  | 4.50  | 5.01  | 6.40  | 7.41  | 6.22  | 5.23  | 7.02  | 6.83  | 5.90  | 0.94 |                                              |       |      |
| 終局耐力 Pu (kN)                    | 57.3  | 63.4  | 55.4  | 56.0  | 59.4  | 58.7  | 57.9  | 70    | 57.6  | 51.5  | 65.4  | 61.4  | 59.5  | 4.94 | 0.083                                        | 0.983 | 58.4 |
| 初期剛性 K (kN/mm)                  | 6.62  | 5.71  | 5.34  | 5.09  | 7.00  | 5.97  | 4.97  | 5.28  | 5.16  | 5.43  | 4.97  | 4.90  | 5.54  | 0.68 |                                              |       |      |
| 降伏点変位 & v (mm)                  | 8.66  | 11.10 | 10.37 | 11.00 | 8.49  | 9.83  | 11.65 | 13.26 | 11.16 | 9.48  | 13.16 | 12.53 | 10.89 | 1.60 |                                              |       |      |
| 塑性率 $\mu = \delta u / \delta v$ | 3.46  | 2.70  | 2.89  | 2.73  | 3.53  | 3.05  | 2.58  | 2.26  | 2.69  | 3.16  | 2.28  | 2.39  | 2.81  | 0.42 |                                              |       |      |
| 構造特性係数 Ds                       | 0.41  | 0.48  | 0.46  | 0.47  | 0.41  | 0.44  | 0.49  | 0.53  | 0.48  | 0.43  | 0.53  | 0.51  | 0.47  | 0.04 |                                              |       |      |

#### 3.10. 設計に用いる接合部仕様

#### (1) 接合部仕様

CLT パネル工法告示第 611 号第十第 2 第九号ロに示すとおり、ルート1 における壁パネ ルー床パネル間のせん断の必要性能は、1 か所当たり 54kN とし、壁パネル幅 1m 当たり 1 か所設置することとなっている。

1か所当たりのビス必要数は、54kN÷7.9kN/本=6.83となるため、図 3.10-1のとおり 7対となる。

ピッチの効果(斜めビスによる割れ補剛効果)は検証していないため、@40mmとする。



図 3.10-1 CLT パネルエ法告示第 611 号第十第 2 第九号ロに対応した接合仕様

(2) LST に使用されている金物用ビスとの強度性能の比較

本ビス仕様と、文献1)に掲載されている公益財団法人日本住宅・木材技術センターχマ ーク表示金物である LST との比較を行う。

文献1)に記載されている LST のデータシートを図 3.10-2 に示す。

LST 金物に使用されている 6.5 mmの半ねじビス 36 本打ち(@3kN)に対して、本仕様は、9 mmの全ねじビス 7 セット 14 本打ち(@3.95kN)となった。

ビスの断面積を比較すると(6.5 mm/2)<sup>2</sup>=10.56 mm<sup>2</sup>、(9 mm/2)<sup>2</sup>=20.25 mm<sup>2</sup>と約2倍に なっているが、耐力はそれほど上がらず、断面積と耐力は正比例しないことが分かった。



図 9.4-32 LST (壁パネルー床パネル接合)の強度性能 図 3.10-2 LST の強度性能 (文献 1)より抜粋)

## 4. 壁-床接合 ビス接合の面外せん断試験

## 4.1. 試験の目的

3章で検討を行った壁-床ビス接合部の面内せん断試験は、地震力を想定した試験であ る。本章では、同一接合部の風圧力を想定した面外方向のせん断性能(図 4.1-1)について 試験を行うこととした。



#### 図 4.1-1 風圧力による面外方向の抵抗

## 4.2. 試験の種類

面外せん断試験の種類は、表 4.2-1 のとおりである。

| 通 |                   |             | CLT    | の種類    |        |       |     | 接               | 合具の種  | 類      | 計除               |
|---|-------------------|-------------|--------|--------|--------|-------|-----|-----------------|-------|--------|------------------|
| L | 試驗休記号             | 011の樹種 / 笙  | 壁パネノ   | L      | 床パネル   |       |     | 山深              | 接合具   |        | <u>武</u> 殿<br>休数 |
| 番 | 12000X P++100 - J | 級/構成方法      | 層構成    | 加力方    | 層構成    | 加力方   | 名称  | ці <del>т</del> | 長さ    | 打ち込み方向 | (休)              |
| 号 |                   | 版/ (冉乃()) 五 | (厚さ)   | 向      | (厚さ)   | 向     |     | u (mm)          | l(mm) |        | (1+1)            |
| 1 | ↓33S-33SP         |             |        |        |        | 之志    |     |                 |       | 引き抜き方向 | 3                |
| 2 | ↓33S-33SB         | スギCLT/      | 3層3プライ | 冷劫     | 3層3プライ | 7虫 平田 | 全ねじ | 0               | 220   | 座屈方向   | 3                |
| 3 | ↓33S-33WP         | Mx60/A種構成   | (90mm) | 735 平田 | (90mm) | 22 市山 | ビス  | 9               | 220   | 引き抜き方向 | 3                |
| 4 | ▶33S-33WB         |             |        |        |        | 习习早田  |     |                 |       | 座屈方向   | 3                |
|   |                   |             |        |        | 合計     |       | -   |                 |       |        | 12               |

表 4.2-1 面外せん断試験











ビスの打ち方 斜め+直角打ち 壁 CLT の層構成 壁の強軸・弱軸 床 CLT の層構成 床の強軸・弱軸

ビスの打込み方向 P:引き抜き方向 B:座屈方向

#### 4.3. 試験体仕様

#### (1) ビスの仕様

図 3.5-1 と同一のビスを使用した。

#### (2) 試験体仕様

各試験体図を図 4.3-1~図 4.3-4 に、試験体の含水率を表 4.3-1 に示す。本試験では床パネル材として 3 層 3 プライを用いるので、床パネル側からビス打ちを行うこととした。各 試験においては CLT 相互の間にテフロンシートを挿入し、また主材及び側材端部を R10 に加工することで、極力摩擦が生じないように配慮した。



## 表 4.3-1 試験体の含水率

No.1 V 33S-33SP

#### No.2 V 33S-33SB

| Ν.  |    | 推击       |      | 含水率  | (%)  |      |
|-----|----|----------|------|------|------|------|
| NO. |    | 伸成       | 1    | 2    | 3    | 平均   |
|     | 側材 | R(DG1/2) | 9.9  | 10.7 | 10.2 | 10.3 |
| 1   | 側材 | L(DG3/4) | 9.3  | 10.0 | 10.0 | 9.8  |
|     | 主材 | -        | 9.6  | 9.7  | 10.1 | 9.8  |
|     | 側材 | R(DG1/2) | 9.0  | 9.4  | 10.9 | 9.8  |
| 2   | 側材 | L(DG3/4) | 9.8  | 9.3  | 9.9  | 9.7  |
|     | 主材 | -        | 9.5  | 10.4 | 10.4 | 10.1 |
|     | 側材 | R(DG1/2) | 10.1 | 9.9  | 9.7  | 9.9  |
| 3   | 側材 | L(DG3/4) | 9.2  | 11.2 | 10.0 | 10.1 |
|     | 主材 | -        | 9.7  | 10.0 | 10.1 | 9.9  |

| Ν.  |    | 推卍       |      | 含水率  | (%)  |      |
|-----|----|----------|------|------|------|------|
| NO. |    | 伸风       | 1    | 2    | 3    | 平均   |
|     | 側材 | R(DG1/2) | 9.5  | 10.0 | 10.5 | 10.0 |
| 1   | 側材 | L(DG3/4) | 9.1  | 8.9  | 9.3  | 9.1  |
|     | 主材 | I        | 8.5  | 8.4  | 8.9  | 8.6  |
|     | 側材 | R(DG1/2) | 8.7  | 9.3  | 9.6  | 9.2  |
| 2   | 側材 | L(DG3/4) | 9.2  | 9.1  | 10.6 | 9.6  |
|     | 主材 | -        | 8.3  | 8.4  | 8.5  | 8.4  |
|     | 側材 | R(DG1/2) | 9.7  | 8.1  | 9.9  | 9.2  |
| 3   | 側材 | L(DG3/4) | 10.5 | 9.6  | 9.1  | 9.7  |
|     | 主材 | _        | 8.8  | 89   | 8 4  | 87   |

#### No.3 ↓ 33S-33WP

| Ν.  |    | 進己       |      | 含水率 | (%)  |     |
|-----|----|----------|------|-----|------|-----|
| NO. |    | 伸成       | 1    | 2   | 3    | 平均  |
|     | 側材 | R(DG1/2) | 8.4  | 8.4 | 9.0  | 8.6 |
| 1   | 側材 | L(DG3/4) | 8.5  | 9.4 | 10.0 | 9.3 |
|     | 主材 | -        | 9.2  | 9.2 | 10.1 | 9.5 |
|     | 側材 | R(DG1/2) | 8.9  | 9.1 | 10.2 | 9.4 |
| 2   | 側材 | L(DG3/4) | 8.7  | 9.4 | 10.4 | 9.5 |
|     | 主材 | -        | 9.1  | 8.9 | 8.6  | 8.9 |
|     | 側材 | R(DG1/2) | 9.8  | 9.6 | 8.9  | 9.4 |
| 3   | 側材 | L(DG3/4) | 10.5 | 9.3 | 8.8  | 9.5 |
|     | 主材 | _        | 9.0  | 9.1 | 9.0  | 9.0 |

| No.4 | V | 33S- | 33WB |
|------|---|------|------|
|------|---|------|------|

| No. |    | 雄卍       | 含水率(%) |     |      |     |  |  |  |  |
|-----|----|----------|--------|-----|------|-----|--|--|--|--|
|     |    | 1再 戊     | 1      | 2   | 3    | 平均  |  |  |  |  |
|     | 側材 | R(DG1/2) | 8.8    | 9.1 | 9.1  | 9.0 |  |  |  |  |
| 1   | 側材 | L(DG3/4) | 9.5    | 9.3 | 9.0  | 9.3 |  |  |  |  |
|     | 主材 | -        | 9.7    | 9.8 | 9.5  | 9.7 |  |  |  |  |
|     | 側材 | R(DG1/2) | 10.5   | 9.9 | 9.0  | 9.8 |  |  |  |  |
| 2   | 側材 | L(DG3/4) | 9.3    | 8.8 | 10.4 | 9.5 |  |  |  |  |
|     | 主材 | I        | 9.0    | 9.8 | 9.3  | 9.4 |  |  |  |  |
| 3   | 側材 | R(DG1/2) | 9.2    | 9.8 | 8.9  | 9.3 |  |  |  |  |
|     | 側材 | L(DG3/4) | 8.7    | 9.9 | 8.6  | 9.1 |  |  |  |  |
|     | 主材 | -        | 9.3    | 9.8 | 9.6  | 9.6 |  |  |  |  |

#### 4.4. 試験方法、評価方法

試験方法は写真 4.4-1 に示すとおり、側材は面内方向の開きや浮き上がりをシャコ万やスト ッパで押さえることとした。

風圧力を想定しているので、正負交番加力ではなく、一方向の繰り返し試験とした。当て 板は接合部に干渉しないような幅寸法とした。変位は左右、手前奥の4点のCLT相互の相対 変位とし、その平均を接合部の変位とした。加力方法は、 $\delta_y = 2$  mmとして1/2,1,2,4,6,8,12,16 倍の順で正負交番加力方向繰り返し加力として引張で破壊させるものとした。

評価方法は完全弾塑性モデルによる評価とし、信頼水準 75%における 95%下側許容限界値 として評価を行った。



写真 4.4-1 試験方法

## 4.5. 試験結果

#### 4.5.1. V 33S-33SP

荷重変位曲線を図 4.5.1-1 に、包絡線を図 4.5.1-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 4.5.1-1 に、破壊性状を写真 4.5.1-1~写真 4.5.1-8 に示す。CLT の割裂 が確認された。



## 図 4.5.1-1 荷重変位曲線(ビス1本あたり) 図 4.5.1-2 包絡線(ビス1本あたり) 表 4.5.1-1 完全弾塑性モデルによる評価(1試験体あたり(ビス8本分))

| 試験体記号               | V     | ₩33S-33SP |       | 亚坎荷   | <b>趰</b> 淮佢主 | 亦動反粉         | ばらつき  | 5%   | 1 木 ち た り |
|---------------------|-------|-----------|-------|-------|--------------|--------------|-------|------|-----------|
| 項目                  | 1     | 2         | 3     | 平均恒   | 保毕佣左         | <b>爱</b> 劉休毅 | 係数    | 下限値  | 1/4/0/29  |
| 1/10Pm (kN)         | 5.2   | 4.8       | 4.9   | 5.0   | 0.21         |              |       |      |           |
| 1/10 δ m (mm)       | 0.19  | 0.16      | 0.18  | 0.18  | 0.02         |              |       |      |           |
| 2/5Pm (kN)          | 20.7  | 19.0      | 19.6  | 19.8  | 0.86         |              |       |      |           |
| 2/5 δ m (mm)        | 1.01  | 0.93      | 0.99  | 0.98  | 0.04         |              | -     |      |           |
| 2/3Pm (kN)          | 34.4  | 31.7      | 32.7  | 32.9  | 1.37         | 0.042        | 0.868 | 28.5 | 3.6       |
| 2/3 δ m (mm)        | 1.86  | 1.77      | 1.76  | 1.80  | 0.06         |              |       |      |           |
| 9/10Pm (kN)         | 46.5  | 42.9      | 44.1  | 44.5  | 1.83         |              |       |      |           |
| 9/10 δ m (mm)       | 2.81  | 2.74      | 2.70  | 2.75  | 0.06         |              |       |      |           |
| Pm (kN)             | 51.6  | 47.6      | 49.0  | 49.4  | 2.03         |              |       |      |           |
| δ m (mm)            | 3.40  | 4.80      | 3.80  | 4.00  | 0.72         |              |       |      |           |
| δu時荷重(kN)           | 41.3  | 38.1      | 46.9  | 42.1  | 4.45         |              |       |      |           |
| δu (mm)             | 9.74  | 8.83      | 4.40  | 7.66  | 2.86         |              |       |      |           |
| 降伏耐力 Py (kN)        | 28.8  | 28.9      | 30.4  | 29.4  | 0.90         | 0.031        | 0.902 | 26.5 | 3.3       |
| δy (mm)             | 1.55  | 1.57      | 1.65  | 1.59  | 0.05         |              |       | -    |           |
| 終局耐力 Pu (kN)        | 44.8  | 44.2      | 47.3  | 45.4  | 1.64         | 0.036        | 0.887 | 40.2 | 5.0       |
| 初期剛性 K (kN/mm)      | 18.58 | 18.41     | 18.42 | 18.47 | 0.10         |              |       |      |           |
| 降伏点変位 δv(mm)        | 2.41  | 2.40      | 2.57  | 2.46  | 0.10         |              |       |      |           |
| <u>塑</u> 性率 μ=δu/δv | 4.04  | 3.68      | 1.71  | 3.14  | 1.25         |              |       |      |           |
| 構造特性係数 Ds           | 0.38  | 0.40      | 0.64  | 0.47  | 0.14         |              |       |      |           |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとする。



写真 4.5.1-1 No.1 レ 33S-33SP-1 試験前 ※試験体に「SB」と記載してあるのは間違い



写真 4.5.1-3 No.1 b 33S-33SP-1 ビス打ち込み部からの木材の割裂







写真 4.5.1-7 No.1 b 33S-33SP-3 ビス打ち込み部からの木材の割裂



写真 4.5.1-2 No.1 レ 33S-33SP-1 試験後 ※試験体に「SB」と記載してあるのは間違い



写真 4.5.1-4 No.1 レ 33S-33SP-2 試験後 ※試験体に「SB」と記載してあるのは間違い



写真 4.5.1-6 No.1 レ 33S-33SP-3 試験後 ※試験体に「SB」と記載してあるのは間違い



写真 4.5.1-8 No.1 b 33S-33SP-3 CLT 上面部の木材のめくれ

#### 4.5.2. V 33S-33SB

荷重変位曲線を図 4.5.2-1 に、包絡線を図 4.5.2-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 4.5.2-1 に、破壊性状を写真 4.5.2-1~写真 4.5.2-8 に示す。CLT の割裂 が確認された。



## 図 4.5.2-1 荷重変位曲線(ビス1本あたり) 図 4.5.2-2 包絡線(ビス1本あたり) 表 4.5.2-1 完全弾塑性モデルによる評価(1試験体あたり(ビス8本分))

| 試験体記号          | レ     | ∨33S-33SB |       |       | 插淮庐主 | 亦動反粉         | ばらつき  | 5%   | 1本あたり    |  |
|----------------|-------|-----------|-------|-------|------|--------------|-------|------|----------|--|
| 項目             | 1     | 2         | 3     | 平均恒   | 保毕倆左 | <b>爱</b> 劉休毅 | 係数    | 下限値  | 1/4/0/29 |  |
| 1/10Pm (kN)    | 5.4   | 5.5       | 5.7   | 5.5   | 0.15 |              |       |      |          |  |
| 1/10 δ m (mm)  | 0.17  | 0.15      | 0.17  | 0.16  | 0.01 |              |       |      |          |  |
| 2/5Pm (kN)     | 21.7  | 22.0      | 22.7  | 22.1  | 0.51 |              |       |      |          |  |
| 2/5δm (mm)     | 0.86  | 0.80      | 0.90  | 0.85  | 0.05 |              |       |      |          |  |
| 2/3Pm (kN)     | 36.2  | 36.7      | 37.8  | 36.9  | 0.82 | 0.022        | 0.931 | 34.3 | 4.3      |  |
| 2/3 δ m (mm)   | 1.78  | 1.58      | 1.87  | 1.74  | 0.15 |              |       |      |          |  |
| 9/10Pm (kN)    | 48.9  | 49.6      | 51.0  | 49.8  | 1.07 |              |       |      |          |  |
| 9/10 δ m (mm)  | 3.04  | 2.52      | 3.55  | 3.04  | 0.52 |              |       |      |          |  |
| Pm (kN)        | 54.3  | 55.1      | 56.7  | 55.4  | 1.22 |              |       |      |          |  |
| δ m (mm)       | 4.80  | 3.60      | 7.00  | 5.13  | 1.72 |              |       |      |          |  |
| δu時荷重(kN)      | 43.4  | 44.1      | 49.7  | 45.7  | 3.45 |              |       |      |          |  |
| δu (mm)        | 5.99  | 4.77      | 13.70 | 8.15  | 4.84 |              |       |      |          |  |
| 降伏耐力 Py (kN)   | 29.9  | 30.5      | 31.9  | 30.8  | 1.03 | 0.033        | 0.896 | 27.5 | 3.4      |  |
| δy (mm)        | 1.35  | 1.26      | 1.44  | 1.35  | 0.09 |              |       |      |          |  |
| 終局耐力 Pu (kN)   | 50.0  | 51.4      | 52.4  | 51.3  | 1.21 | 0.024        | 0.924 | 47.4 | 5.9      |  |
| 初期剛性 K (kN/mm) | 22.15 | 24.21     | 22.15 | 22.84 | 1.19 |              |       |      |          |  |
| 降伏点変位 δv(mm)   | 2.26  | 2.12      | 2.37  | 2.25  | 0.13 |              |       |      |          |  |
| 塑性率 μ=δu/δv    | 2.65  | 2.25      | 5.78  | 3.56  | 1.93 |              |       |      |          |  |
| 構造特性係数 Ds      | 0.48  | 0.53      | 0.31  | 0.44  | 0.12 |              |       |      |          |  |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとする。



写真 4.5.2-1 No.2 レ 33S-33SB-1 試験前 ※試験体に「SP」と記載してあるのは間違い



写真 4.5.2-3 No.2 b 33S-33SB-1 ビス打ち込み部からの木材の割裂



写真 4.5.2-5 No.2 レ 33S-33SB-2 ビス打ち込み部からの木材の割裂



写真 4.5.2-7 No.2 レ 33S-33SB-3 ビス打ち込み部からの木材の割裂



写真 4.5.2-2 No.2 レ 33S-33SB-1 試験後 ※試験体に「SP」と記載してあるのは間違い



写真 4.5.2-4 No.2 レ 33S-33SB-2 試験後 ※試験体に「SP」と記載してあるのは間違い



写真 4.5.2-6 No.2 レ 33S-33SB-3 試験後 ※試験体に「SP」と記載してあるのは間違い



写真 4.5.2-8 No.2 b 33S-33SB-3 ビス打ち込み部からの木材の割裂

#### 4.5.3. V 33S-33WP

荷重変位曲線を図 4.5.3-1 に、包絡線を図 4.5.3-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 4.5.3-1 に、破壊性状を写真 4.5.3-1~写真 4.5.3-8 に示す。CLT の割裂 が確認された。



図 4.5.3-1 荷重変位曲線(ビス1本あたり) 図 4.5.3-2 包絡線(ビス1本あたり) 表 4.5.3-1 完全弾塑性モデルによる評価(1試験体あたり(ビス8本分))

| 試験体記号                      | レ     | ₩33S-33WP |       |       | 插淮庐主 | 亦動な粉        | ばらつき  | 5%   | 1 ★ なたり  |
|----------------------------|-------|-----------|-------|-------|------|-------------|-------|------|----------|
| 項目                         | 1     | 2         | 3     | 平均恒   | 保毕佣定 | <b>爱</b> 期你 | 係数    | 下限値  | 1/4/0/29 |
| 1/10Pm (kN)                | 5.1   | 4.9       | 5.0   | 5.0   | 0.10 |             |       |      |          |
| $1/10 \ \delta \ m \ (mm)$ | 0.13  | 0.17      | 0.17  | 0.16  | 0.02 |             |       |      |          |
| 2/5Pm (kN)                 | 20.4  | 19.8      | 19.8  | 20.0  | 0.35 |             |       |      |          |
| 2/5δm (mm)                 | 0.72  | 0.91      | 1.00  | 0.88  | 0.14 |             |       |      |          |
| 2/3Pm (kN)                 | 34.0  | 33.0      | 33.0  | 33.3  | 0.58 | 0.017       | 0.946 | 31.5 | 3.9      |
| 2/3 δ m (mm)               | 1.37  | 1.71      | 1.73  | 1.60  | 0.20 |             |       |      |          |
| 9/10Pm (kN)                | 45.9  | 44.5      | 44.6  | 45.0  | 0.78 |             |       |      |          |
| 9/10 δ m (mm)              | 2.34  | 2.79      | 2.54  | 2.56  | 0.23 |             |       |      |          |
| Pm (kN)                    | 51.0  | 49.5      | 49.6  | 50.0  | 0.84 |             |       |      |          |
| δ m (mm)                   | 5.80  | 3.60      | 3.90  | 4.43  | 1.19 |             |       |      |          |
| δu時荷重(kN)                  | 40.8  | 39.6      | 39.7  | 40.0  | 0.67 |             |       |      |          |
| δu (mm)                    | 9.83  | 12.54     | 24.18 | 15.52 | 7.62 |             |       |      |          |
| 降伏耐力 Py (kN)               | 31.1  | 31.3      | 35.9  | 32.8  | 2.72 | 0.083       | 0.738 | 24.2 | 3.0      |
| δy (mm)                    | 1.27  | 1.59      | 1.96  | 1.61  | 0.35 |             |       |      |          |
| 終局耐力 Pu (kN)               | 48.9  | 43.1      | 44.1  | 45.4  | 3.10 | 0.068       | 0.786 | 35.6 | 4.5      |
| 初期剛性 K (kN/mm)             | 24.49 | 19.69     | 18.32 | 20.83 | 3.24 |             |       |      |          |
| 降伏点変位 δv(mm)               | 2.00  | 2.19      | 2.41  | 2.20  | 0.21 |             |       |      |          |
| 塑性率 μ=δu/δv                | 4.92  | 5.73      | 10.03 | 6.89  | 2.75 |             |       |      |          |
| 構造特性係数 Ds                  | 0.34  | 0.31      | 0.23  | 0.29  | 0.06 |             |       |      |          |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとする。



写真 4.5.3-1 No.3 V 33S-33WP-1 試験前 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.3-3 No.3 b 33S-33WP-1 ビス打ち込み部からの木材の割裂



写真 4.5.3-5 No.3 レ 33S-33WP-2 ビス打ち込み部からの木材の割裂



写真 4.5.3-7 No.3 V 33S-33WP-3 試験後 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.3-2 No.3 レ 33S-33WP-1 試験後 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.3-4 No.3 V 33S-33WP-2 試験後 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.3-6 No.3 b 33S-33WP-2 ビスによる CLT 上面部の木材のめくれ



写真 4.5.3-8 No.3 レ 33S-33WP-3 ビス打ち込み部からの木材の割裂

#### 4.5.4. V 33S-33WB

荷重変位曲線を図 4.5.4-1 に、包絡線を図 4.5.4-2 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 4.5.4-1 に、破壊性状を写真 4.5.4-1~写真 4.5.4-7 に示す。CLT の割裂 が確認された。



図 4.5.4-1 荷重変位曲線(ビス 1 本あたり) 図 4.5.4-2 包絡線 (ビス 1 本あたり) 表 4.5.4-1 完全弾塑性モデルによる評価(1 試験体あたり (ビス 8 本分))

| 試験体記号          | レき    | 33S-33W | /B    | 平均值 / | 趰淮佢主 | 亦動反粉         | ばらつき  | 5%   | 1 ★ なたり |
|----------------|-------|---------|-------|-------|------|--------------|-------|------|---------|
| 項目             | 1     | 2       | 3     | 平均恒   | 保毕佣定 | <b>爱</b> 劉休毅 | 係数    | 下限値  | 140/29  |
| 1/10Pm (kN)    | 5.6   | 4.6     | 5.1   | 5.1   | 0.50 |              |       |      |         |
| 1/10 δ m (mm)  | 0.17  | 0.18    | 0.13  | 0.16  | 0.03 |              |       |      |         |
| 2/5Pm (kN)     | 22.5  | 18.3    | 20.2  | 20.3  | 2.10 |              |       |      |         |
| 2/5δm (mm)     | 0.96  | 0.94    | 0.85  | 0.92  | 0.06 |              |       |      |         |
| 2/3Pm (kN)     | 37.6  | 30.5    | 33.7  | 33.9  | 3.56 | 0.105        | 0.669 | 22.6 | 2.8     |
| 2/3 δ m (mm)   | 2.00  | 1.83    | 1.67  | 1.83  | 0.17 |              |       |      |         |
| 9/10Pm (kN)    | 50.7  | 41.2    | 45.5  | 45.8  | 4.76 |              |       |      |         |
| 9/10 δ m (mm)  | 3.47  | 5.54    | 2.77  | 3.93  | 1.44 |              |       |      |         |
| Pm (kN)        | 56.3  | 45.8    | 50.6  | 50.9  | 5.26 |              |       |      |         |
| δ m (mm)       | 5.50  | 14.80   | 3.60  | 7.97  | 5.99 |              |       |      |         |
| δu時荷重(kN)      | 45.1  | 45.8    | 40.4  | 43.8  | 2.94 |              |       |      |         |
| δu (mm)        | 14.60 | 14.80   | 10.10 | 13.17 | 2.66 |              |       |      |         |
| 降伏耐力 Py (kN)   | 30.5  | 34.9    | 27.8  | 31.1  | 3.58 | 0.115        | 0.638 | 19.8 | 2.5     |
| δy (mm)        | 1.49  | 2.16    | 1.33  | 1.66  | 0.44 |              |       |      |         |
| 終局耐力 Pu (kN)   | 50.5  | 42.1    | 44.0  | 45.5  | 4.40 | 0.097        | 0.694 | 31.5 | 3.9     |
| 初期剛性 K (kN/mm) | 20.47 | 16.16   | 20.90 | 19.18 | 2.62 |              |       |      |         |
| 降伏点変位 δv(mm)   | 2.47  | 2.61    | 2.11  | 2.40  | 0.26 |              |       |      |         |
| 塑性率 μ=δu/δv    | 5.91  | 5.67    | 4.79  | 5.46  | 0.59 |              |       |      |         |
| 構造特性係数 Ds      | 0.30  | 0.31    | 0.34  | 0.32  | 0.02 |              |       |      |         |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとする。



写真 4.5.4-1 No.3 V 33S-33WB-1 試験前 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.4-3 No.3 ▷ 33S-33WB-1 ビス打ち込み部からの木材の割裂



写真 4.5.4-5 No.3 b 33S-33WB-2 ビス打ち込み部からの木材の割裂



写真 4.5.4-7 No.3 ▷ 33S-33WB-3 ビス打ち込み部からの木材の割裂



写真 4.5.4-2 No.3 レ 33S-33WB-1 試験後 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.4-4 No.3 レ 33S-33WB-2 試験後 ※試験体に「WB」と記載してあるのは間違い



写真 4.5.4-6 No.3 レ 33S-33WB-3 試験後 ※試験体に「WB」と記載してあるのは間違い

#### 4.6. 考察

3.7 項と同様に、ビス1対あたりの特性値を比較したものを図4.6-1~図4.6-4に示す。 各試験体を比較した結果、強度性能については有意差が認められるほどの違いはなく、ば らつきの範囲と考えられる。



## 4.7. 再評価の結果

12体は、主材側で破壊が起こることから、表 4.7-1のとおり1試験シリーズとして再評価を行った。

ビス1本あたり 3.8kN となった。

### 表 4.7-1 完全弾塑性モデルによる評価(1 試験体あたり(ビス8本))

| 50%                                      | 下限値       |             |               |            |              | 33.8       |              |             |             |         |          |             |          | 30.5         |         | 46.1         |                |              |                                 |           |
|------------------------------------------|-----------|-------------|---------------|------------|--------------|------------|--------------|-------------|-------------|---------|----------|-------------|----------|--------------|---------|--------------|----------------|--------------|---------------------------------|-----------|
| ばらつき                                     | 係数        |             |               |            |              | 0.986      |              |             |             |         |          |             |          | 0.985        |         | 0.985        |                |              |                                 |           |
| 12 · 12 · 14                             | と判(示数     |             |               |            |              | 0.068      |              |             |             |         |          |             |          | 0.076        |         | 0.077        |                |              |                                 |           |
| 二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十 | 院平周左 <br> | 0.34        | 0.02          | 1.40       | 0.09         | 2.34       | 0.16         | 3.14        | 0.86        | 3.48    | 3.17     | 3.50        | 5.45     | 2.37         | 0.27    | 3.60         | 2.55           | 0.19         | 2.21                            | 0.12      |
| 亚树储                                      |           | 5.2         | 0.16          | 20.6       | 0.91         | 34.3       | 1.74         | 46.3        | 3.07        | 51.4    | 5.38     | 42.9        | 11.12    | 31.0         | 1.55    | 46.9         | 20.33          | 2.33         | 4.76                            | 0.38      |
|                                          | 9         | 5           | 0.17          | 19.8       | 1.00         | 33         | 1.73         | 44.6        | 2.54        | 49.6    | 3.90     | 39.7        | 24.18    | 35.9         | 1.96    | 44.1         | 18.32          | 2.41         | 10.03                           | 0.23      |
| S-33WE                                   | 5         | 4.9         | 0.17          | 19.8       | 0.91         | 33         | 1.71         | 44.5        | 2.79        | 49.5    | 3.60     | 39.6        | 12.54    | 31.3         | 1.59    | 43.1         | 19.69          | 2.19         | 5.73                            | 0.31      |
| 35                                       | 4         | 5.1         | 0.13          | 20.4       | 0.72         | 34         | 1.37         | 45.9        | 2.34        | 51      | 5.80     | 40.8        | 9.83     | 31.1         | 1.27    | 48.9         | 24.49          | 2.00         | 4.92                            | 0.34      |
|                                          | 3         | 5.1         | 0.13          | 20.2       | 0.85         | 33.7       | 1.67         | 45.5        | 2.77        | 50.6    | 3.60     | 40.4        | 10.10    | 27.8         | 1.33    | 44           | 20.90          | 2.11         | 4.79                            | 0.34      |
| S-33WF                                   | 2         | 4.6         | 0.18          | 18.3       | 0.94         | 30.5       | 1.83         | 41.2        | 5.54        | 45.8    | 14.80    | 45.8        | 14.80    | 34.9         | 2.16    | 42.1         | 16.16          | 2.61         | 5.67                            | 0.31      |
| 33                                       | 1         | 5.6         | 0.17          | 22.5       | 0.96         | 37.6       | 2.00         | 50.7        | 3.47        | 56.3    | 5.50     | 45.1        | 14.60    | 30.5         | 1.49    | 50.5         | 20.47          | 2.47         | 5.91                            | 0.30      |
|                                          | 9         | 5.7         | 0.17          | 22.7       | 0.90         | 37.8       | 1.87         | 51.0        | 3.55        | 56.7    | 7.00     | 49.7        | 13.70    | 31.9         | 1.44    | 52.4         | 22.15          | 2.37         | 5.78                            | 0.31      |
| 3S-33SB                                  | 5         | 5.5         | 0.15          | 22.0       | 0.80         | 36.7       | 1.58         | 49.6        | 2.52        | 55.1    | 3.60     | 44.1        | 4.77     | 30.5         | 1.26    | 51.4         | 24.21          | 2.12         | 2.25                            | 0.53      |
| 8                                        | 4         | 5.4         | 0.17          | 21.7       | 0.86         | 36.2       | 1.78         | 48.9        | 3.04        | 54.3    | 4.80     | 43.4        | 5.99     | 29.9         | 1.35    | 50.0         | 22.15          | 2.26         | 2.65                            | 0.48      |
|                                          | 3         | 4.9         | 0.18          | 19.6       | 0.99         | 32.7       | 1.76         | 44.1        | 2.70        | 49.0    | 3.80     | 46.9        | 4.40     | 30.4         | 1.65    | 47.3         | 18.42          | 2.57         | 1.71                            | 0.64      |
| 3S-33SP                                  | 2         | 4.8         | 0.16          | 19.0       | 0.93         | 31.7       | 1.77         | 42.9        | 2.74        | 47.6    | 4.80     | 38.1        | 8.83     | 28.9         | 1.57    | 44.2         | 18.41          | 2.40         | 3.68                            | 0.40      |
| 35                                       | 1         | 5.2         | 0.19          | 20.7       | 1.01         | 34.4       | 1.86         | 46.5        | 2.81        | 51.6    | 3.40     | 41.3        | 9.74     | 28.8         | 1.55    | 44.8         | 18.58          | 2.41         | 4.04                            | 0.38      |
| 試験体記号                                    | 通目        | 1/10Pm (kN) | 1/10 δ m (mm) | 2/5Pm (kN) | 2/5 δ m (mm) | 2/3Pm (kN) | 2/3 δ m (mm) | 9/10Pm (kN) | 9/10δm (mm) | Pm (kN) | δ m (mm) | δ u時荷重 (kN) | δ u (mm) | 降伏耐力 Py (kN) | δy (mm) | 終局耐力 Pu (kN) | 初期剛性 K (kN/mm) | 降伏点変位 δv(mm) | 塑性率 $\mu = \delta u / \delta v$ | 構造特性係数 Ds |

#### 5. 壁−直交壁接合 ビス接合仕様規定の評価方法の検討及び面内せん断試験

#### 5.1. 検討の目的

CLT パネル工法建築物の仕様規定ルートの創設に関する検討報告書<sup>2)</sup>(以下「基整促 35 報告書」という。)では、新たな告示案として壁量計算等不要ルートが検討されている。

当該仕様規定では、壁一直交壁の接合方法として、ビスを図 5.1-1 のとおり斜めに留め付けることによって、壁脚部に生じる引張力(あるいは圧縮力)の一部を直交壁が負担できるとしている。基整促 35 報告書では図 5.1-2 のような耐力壁試験によって評価を行っている。

今後新たな接合仕様を開発したい場合に、耐力壁試験が必要ということになると開発者 の負担が大き過ぎるため、簡便に評価する方法を確立させる必要がある。併せて施工の低 コスト化に対応するため、太いビス径のビスを用いることによって、施工に必要なビスの 本数を減らすことができるか実験的な検証を行い、評価方法の妥当性についても確認す る。





図 5.1-2 耐力壁試験体(基整促 35報告書より抜粋)

#### 5.2. 検討方針

基整促 35 報告書では、No.1 はビス無し仕様、No.2~4 は、図 5.1-1 に示す仕様として耐力壁の試験を実施している。結果は表 5.2-1、図 5.2-1 のとおりである。

結果より、ビスを打っていない No1 と比較して、ビスを 300 mmピッチで打った No.2,ビスを 150 mmピッチで打った No.3、150 mmピッチかつ床継ぎ手を設けた No.4 の耐力は大き く上回ることとなった。

当該試験で使用された下記のビスとの同等性を確認することにより、径 9 mmの全ねじビ スも適用可能とし、1 本あたりのビスの本数を減らすことで施工性向上に寄与することを期 待して実験を行うこととする。

|      | Ру    | 0.2Pu/Ds | 2/3Pmax | P120  | Pa    | 壁倍率   |
|------|-------|----------|---------|-------|-------|-------|
|      | [kN]  | [kN]     | [kN]    | [kN]  | [kN]  |       |
| No.1 | 33.09 | 45.64    | 35.43   | 38.84 | 33.09 | 8.44  |
| No.2 | 42.14 | 59.46    | 55.43   | 54.59 | 42.14 | 10.75 |
| No.3 | 58.99 | 45.74    | 63.88   | 55.03 | 45.74 | 11.67 |
| No.4 | 52.96 | 53.85    | 59.48   | 57.57 | 52.96 | 13.51 |

表 5.2-1 特性値の比較



図 5.2-1 荷重 - 変形関係の包絡線と完全弾塑性モデル

## 5.3. 評価方法の検討

## 5.3.1. 耐力壁の性能と接合部設計の考え方

耐力壁-直交壁の接合部設計の考え方は下記のとおりである。

- ・壁と直交壁は一体となってロッキング挙動する(図 5.3.1-1)。
- このとき、ビス接合と引きボルト接合の直列バネとなり、設計の考え方としてボルトを 先行降伏させるため、引きボルト接合の降伏耐力<ビス接合の降伏耐力となるように接 合部設計する。
- ・十字型試験体は、試験耐力が高くなる傾向にあるので、絶対評価を行う場合は H 型とする。側材がロッキング挙動しずらいことが原因と考えられるとのこと。
- ・剛性に代わる指標として、変位 20 mmまでの Pmax を条件に加える。



W1\_TWE(B)\_NBJ (R4\_No.1)



W1\_TWE(B)\_NBJ\_SJ100 (R4\_No.2)



W1\_TWE(B)\_Cy (R4\_No.4)

W2 TWC(F) NSJ (R4 No.3)

図 5.3.1-1 基整促 35 実験の様子 ※基整促 35 報告書<sup>2)</sup>より抜粋

### 5.3.2. 提案する評価方法

#### ア.絶対評価を行う場合

(1)試験方法

ビス接合は塑性化させない考え方なので、繰り返し加力試験ではなく、単調加力試験 でよい。評価対象のビス接合を6体。

試験体形状はH型形状のロケット型試験。変位は20mmまで計測。

(2)評価方法

ビス接合の  $P_y$ 、変位 20 mmまでの  $P_{max}$ を算出。

下記を満たすことが条件

- P<sub>y</sub>(5%下限値) × 設計に使う1接合部のビス本数 > 1.7kN(表 3-1のとおり) × 22本=37.4kN
- 2)変位 20 mmまでの P<sub>max</sub> (5%下限値) × 設計に使う1接合部のビス本数 >
  3.7kN × 22本 = 81.4kN

表 5.3.2-1 告示 (案) のビス 1 本あたりの特性値 (山崎先生から pickpoint データ提供)

|       |   | Py(kN)  | δy (mm) | $P_{max}(kN)$ | $\delta_{\rm max}(\rm mm)$ |
|-------|---|---------|---------|---------------|----------------------------|
|       | 1 | 2.29746 | 3.40776 | 4.311         | 20.015                     |
|       | 2 | 2.42736 | 3.17904 | 4.4955        | 20.0863                    |
|       | 3 | 1.96239 | 3.18195 | 4.208         | 20.0387                    |
|       | 4 | 2.24614 | 3.38131 | 4.0065        | 20.0525                    |
| kの値   |   | 2.681   |         | 2.681         |                            |
| 平均值   |   | 2.2     | 3.3     | 4.3           | 20.0                       |
| 5%下限值 |   | 1.7     |         | 3.7           |                            |

#### イ.相対評価を行う場合

(1) 試験方法

コントロールとして告示仕様のビス接合、評価対象のビス接合を6体ずつ試験。 比較試験なので、単調加力試験でよい。

試験体形状はH形状若しくは十字型形状のロケット型試験。変位は20mmまで計測。

(2)評価方法

ビス接合の  $P_{y}$ 、変位 20 mmまでの  $P_{max}$ を算出。

下記を満たすことが条件

- 評価対象 Py(5%下限値)× 設計に使う1接合部のビス本数 > コントロール Py (5%下限値)× 22本
- 2)評価対象 P<sub>max</sub> (5%下限値) × 設計に使う1接合部のビス本数 > コントロール P<sub>max</sub> (5%下限値) × 22本

※評価方法は、当該告示仕様の同等性検証法として、公益財団法人日本住宅・木材技術センター発行「CLTを用いた建築物の設計施工マニュアル」<sup>1)</sup>に掲載する予定である。

## 5.4. 試験の種類

試験の種類は表 5.4-1のとおりである。

試験方法は、告示案仕様のビスとの同等性を確認する比較試験なので、加力方法は一番簡 便なロケット型単調加力とした。また絶対評価を行う場合においても告示案仕様のビス接合 部もロケット型単調加力で試験を実施しているため、問題はない。

| 谣 |               |           | CLTの種類                                      |     |        |       |       |     |     |     |  |  |  |  |
|---|---------------|-----------|---------------------------------------------|-----|--------|-------|-------|-----|-----|-----|--|--|--|--|
| 世 |               |           |                                             |     |        |       | 接合    | 打ち  | 試験  |     |  |  |  |  |
| 玉 | 試験体記号         | CLTの樹種/等  | 層構成                                         | 軸方向 | 名称     | 山径    | 具長    | 込み  | 体数  | 備考  |  |  |  |  |
| 田 |               | 級/構成方法    | (厚さ)                                        |     |        | d(mm) | さ     | 角度  | (体) |     |  |  |  |  |
| ~ |               |           |                                             |     |        |       | l(mm) |     |     |     |  |  |  |  |
| 1 | STS6.5F – 135 |           |                                             | 強軸  | 半わじビフ  | 65    | 135   | 40° | 6   | コント |  |  |  |  |
| 1 | (S35仕様)       | スギCLT/    | $2 \square 2 \square 2 \square 3 \square 4$ |     | -12CCX | 0.5   | 100   | 40  | 0   | ロール |  |  |  |  |
| 2 | HTS9F-140     | Mx60/A種構成 | 3層3771 (90000)                              |     | 半ねじビス  | 9     | 140   | 45° | 6   |     |  |  |  |  |
| 3 | HTS9-140      |           |                                             |     | 全ねじビス  | 9     | 140   | 45° | 6   |     |  |  |  |  |
|   |               |           |                                             |     |        |       |       |     |     |     |  |  |  |  |

表 5.4-1 試験の種類

## 5.5. 試験体仕様

#### (1) ビスの仕様

当該試験で使用した長ビスは図 5.5-1~図 5.5-3 のとおりである。



図 5.5-1 基整促 35 で使用した半ねじビス STS6.5F-L135(コントロール)


図 5.5-2 半ねじビス HTS9・F-140

alan bertundun ten harden den harden harden harden harden harden harden harden harden h





# 図 5.5-3 全ねじビス HTS9-140

### (2) 試験体仕様

各試験体図を図 5.5-4~図 5.5-6 に、試験体の密度と含水率を表 5.5-1 に示す。試験体形 状は H 型形状のロケット型試験とした。





図 5.5-4 No.1 STS6.5F-135 試験体図 (コントロール)





壁CLT強軸方向







壁CLT強軸方向



図 5.5-5 No.2 HTS9F-140 試験体図

### 表 5.5-1 密度と含水率

No.1 STS6.5F-135

No.2 HTS9F-140

|           | 主                          | 材          | 側材                         | 11左        | 側材                         | 側材2右       |  |  |
|-----------|----------------------------|------------|----------------------------|------------|----------------------------|------------|--|--|
| 試験体記号     | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) |  |  |
| STS6.5F-1 | 0.42                       | 11.0       | 0.42                       | 11.0       | 0.42                       | 11.5       |  |  |
| 2         | 0.41                       | 11.5       | 0.41                       | 12.0       | 0.41                       | 11.0       |  |  |
| 3         | 0.41                       | 10.5       | 0.41                       | 10.5       | 0.41                       | 12.0       |  |  |
| 4         | 0.41                       | 12.0       | 0.41                       | 11.0       | 0.41                       | 10.5       |  |  |
| 5         | 0.41                       | 11.0       | 0.41                       | 11.5       | 0.41                       | 11.5       |  |  |
| 6         | 0.40                       | 12.0       | 0.40                       | 10.0       | 0.40                       | 13.0       |  |  |
| 平均値       | 0.41                       | 11.3       | 0.41                       | 11.0       | 0.41                       | 11.6       |  |  |
| 標準偏差      | 0.01                       | 0.6        | 0.01                       | 0.7        | 0.01                       | 0.9        |  |  |

|         | 主                          | 材          | 側材                         | 11左        | 側材2右                       |            |  |
|---------|----------------------------|------------|----------------------------|------------|----------------------------|------------|--|
| 試験体記号   | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) |  |
| HTS9F-1 | 0.42                       | 12.0       | 0.42                       | 12.5       | 0.42                       | 12.5       |  |
| 2       | 0.41                       | 12.0       | 0.41                       | 10.5       | 0.41                       | 13.0       |  |
| 3       | 0.41                       | 12.0       | 0.41                       | 11.0       | 0.41                       | 11.0       |  |
| 4       | 0.41                       | 11.0       | 0.41                       | 11.0       | 0.41                       | 10.5       |  |
| 5       | 0.41                       | 12.5       | 0.41                       | 12.5       | 0.41                       | 10.5       |  |
| 6       | 0.40                       | 12.0       | 0.40                       | 12.0       | 0.40                       | 11.5       |  |
| 平均値     | 0.41                       | 11.9       | 0.41                       | 11.6       | 0.41                       | 11.5       |  |
| 標準偏差    | 0.01                       | 0.5        | 0.01                       | 0.9        | 0.01                       | 1.0        |  |

# No.3 HTS9-140

|           | 主                          | <br>材      | 側を                         | 11左        | 側を                         | 12右        |
|-----------|----------------------------|------------|----------------------------|------------|----------------------------|------------|
| 試験体記号     | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) | 密度<br>(g/cm <sup>3</sup> ) | 含水率<br>(%) |
| STS6.5F-1 | 0.42                       | 11.0       | 0.42                       | 11.0       | 0.42                       | 11.5       |
| 2         | 0.41                       | 11.5       | 0.41                       | 12.0       | 0.41                       | 11.0       |
| 3         | 0.41                       | 10.5       | 0.41                       | 10.5       | 0.41                       | 12.0       |
| 4         | 0.41                       | 12.0       | 0.41                       | 11.0       | 0.41                       | 10.5       |
| 5         | 0.41                       | 11.0       | 0.41                       | 11.5       | 0.41                       | 11.5       |
| 6         | 0.40                       | 12.0       | 0.40                       | 10.0       | 0.40                       | 13.0       |
| 平均値       | 0.41                       | 11.3       | 0.41                       | 11.0       | 0.41                       | 11.6       |
| 標準偏差      | 0.01                       | 0.6        | 0.01                       | 0.7        | 0.01                       | 0.9        |

### 5.6. 試験方法、評価方法

試験体形状は H型形状のロケット型試験とした。

試験体の側材は加力後のねじれ等を抑えるため、写真 5.6-1 のとおり治具で L アングルと 六角ボルトで抑えることとした。

加力方法は、単調加力試験とし、荷重が 0.8*P*<sub>max</sub>に落ちるまで計測を行った。変位は CLT 相互の相対変位を試験体の前後で計測した。

評価方法は、測定したデータについて変位 20 mm超えた部分を削除(図 5.6-1)してから完 全弾塑性モデルによる評価を行った。(終盤で荷重が上がるものは通常の評価方法で評価を 行ったものより *P*<sub>y</sub>が低く算定される。)



写真 5.6-1 試験方法



図 5.6-1 変位 20 mmまでのデータで評価を実施

# 5.7. 試験結果

### 5.7.1. STS6.5F(半ねじ)、コントロール材

荷重変位曲線を図 5.7.1-1 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 5.7.1-1 に、破壊性状を写真 5.7.1-1~写真 5.7.1-6 に示す。ビスが曲げ降伏し、木材の支圧が 確認された。



図 5.7.1-1 荷重変位曲線(1試験体あたり)

| 表 5.7.1-1 完 | 全弾塑性モデルによ | る評価(1 | 試験体あたり | ) |
|-------------|-----------|-------|--------|---|
|-------------|-----------|-------|--------|---|

| 試験体記号          |       |       | STS6. | 5F(正) |       |       | 亚坎荷   | <b></b> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | 亦動反粉  | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|----------------------------------------------|-------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 保牢禰左                                         | 发勤怀效  | 係数    | 下限値  |
| 1/10Pm (kN)    | 4.0   | 4.2   | 3.9   | 3.7   | 3.4   | 3.9   | 3.9   | 0.27                                         |       |       |      |
| 1/10 δ m (mm)  | 0.04  | 0.03  | 0.04  | 0.06  | 0.03  | 0.02  | 0.04  | 0.01                                         |       |       |      |
| 2/5Pm (kN)     | 16.1  | 16.9  | 15.5  | 14.9  | 13.7  | 15.4  | 15.4  | 1.09                                         |       |       |      |
| 2/5δm (mm)     | 1.24  | 1.55  | 1.32  | 1.38  | 1.06  | 1.25  | 1.30  | 0.16                                         |       |       |      |
| 2/3Pm (kN)     | 26.8  | 28.2  | 25.8  | 24.9  | 22.9  | 25.7  | 25.7  | 1.79                                         | 0.070 | 0.836 | 21.4 |
| 2/3 δ m (mm)   | 4.32  | 5.20  | 4.16  | 4.42  | 3.52  | 4.22  | 4.31  | 0.54                                         |       |       |      |
| 9/10Pm (kN)    | 36.2  | 38.1  | 34.8  | 33.6  | 30.9  | 34.7  | 34.7  | 2.43                                         |       |       |      |
| 9/10 δ m (mm)  | 10.84 | 12.96 | 9.95  | 10.12 | 7.87  | 11.50 | 10.54 | 1.70                                         |       |       |      |
| Pm (kN)        | 40.2  | 42.3  | 38.7  | 37.4  | 34.4  | 38.6  | 38.6  | 2.66                                         | 0.069 | 0.839 | 32.3 |
| δ m (mm)       | 16.75 | 19.43 | 16.01 | 18.14 | 15.04 | 20.00 | 17.56 | 1.96                                         |       |       |      |
| δu時荷重(kN)      | 39.4  | 42.0  | 38.0  | 37.2  | 33.7  | 38.6  | 38.2  | 2.73                                         |       |       |      |
| δu (mm)        | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 0.00                                         |       |       |      |
| 降伏耐力 Py (kN)   | 21.5  | 22.8  | 20.8  | 19.6  | 17.8  | 21.6  | 20.7  | 1.76                                         | 0.085 | 0.801 | 16.5 |
| δy (mm)        | 2.44  | 3.06  | 2.51  | 2.45  | 1.90  | 2.73  | 2.52  | 0.38                                         |       |       |      |
| 終局耐力 Pu (kN)   | 36.2  | 37.3  | 35.5  | 33.9  | 31.9  | 34.7  | 34.9  | 1.89                                         | 0.054 | 0.874 | 30.5 |
| 初期剛性 K (kN/mm) | 8.81  | 7.45  | 8.29  | 8.00  | 9.37  | 7.91  | 8.31  | 0.69                                         |       |       |      |
| 降伏点変位 δv(mm)   | 4.11  | 5.01  | 4.28  | 4.24  | 3.40  | 4.39  | 4.24  | 0.52                                         |       |       |      |
| 塑性率 μ=δu/δv    | 4.87  | 3.99  | 4.67  | 4.72  | 5.88  | 4.56  | 4.78  | 0.62                                         |       |       |      |
| 構造特性係数 Ds      | 0.34  | 0.38  | 0.35  | 0.34  | 0.30  | 0.35  | 0.34  | 0.03                                         |       |       |      |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 5.7.1-1 ビス STS6.5F



写真 5.7.1-3 NO.1 STS6.5F-1 試験後



写真 5.7.1-5 NO.1 STS6.5F-1 ビスの曲げ、木材の支圧



写真 5.7.1-2 NO.1 STS6.5F-1 試験前



写真 5.7.1-4 NO.1 STS6.5F-2 ビス頭のめり込み



写真 5.7.1<sup>-6</sup> NO.1 STS6.5F<sup>-6</sup> ビスの曲げ、木材の支圧

### 5.7.2. HTS9F(半ねじ)

荷重変位曲線を図 5.7.2-1 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 5.7.2-1 に、破壊性状を写真 5.7.2-1~写真 5.7.2-6 に示す。ビスが曲げ降伏し、木材の支圧が 確認された。



図 5.7.2-1 荷重変位曲線(1試験体あたり) 表 5.7.2-1 完全弾塑性モデルによる評価(1試験体あたり)

| 試験体記号          |       |       | HTS9  | F(正)  |       |       | 亚坎荷   | <b></b> 插淮 / Ē 主 | 亦動反粉  | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|------------------|-------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 惊华雁左             | 发勤怀奴  | 係数    | 下限值  |
| 1/10Pm (kN)    | 6.3   | 5.6   | 4.9   | 5.6   | 5.6   | 5.5   | 5.6   | 0.44             |       |       |      |
| 1/10 δ m (mm)  | 0.01  | 0.05  | 0.05  | 0.06  | 0.12  | 0.12  | 0.07  | 0.04             |       |       |      |
| 2/5Pm (kN)     | 25.2  | 22.3  | 19.7  | 22.5  | 22.3  | 22.0  | 22.3  | 1.75             |       |       |      |
| 2/5δm (mm)     | 1.48  | 1.60  | 1.71  | 1.69  | 1.71  | 1.83  | 1.67  | 0.12             |       |       |      |
| 2/3Pm (kN)     | 42.1  | 37.1  | 32.9  | 37.5  | 37.1  | 36.6  | 37.2  | 2.93             | 0.079 | 0.815 | 30.3 |
| 2/3 δ m (mm)   | 3.78  | 4.17  | 4.42  | 4.14  | 4.33  | 4.58  | 4.24  | 0.28             |       |       |      |
| 9/10Pm (kN)    | 56.8  | 50.1  | 44.4  | 50.7  | 50.1  | 49.4  | 50.3  | 3.95             |       |       |      |
| 9/10 δ m (mm)  | 11.39 | 13.11 | 13.32 | 12.81 | 13.00 | 12.10 | 12.62 | 0.73             |       |       |      |
| Pm (kN)        | 63.1  | 55.7  | 49.3  | 56.3  | 55.7  | 54.9  | 55.8  | 4.40             | 0.079 | 0.815 | 45.4 |
| δ m (mm)       | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 0.00             |       |       |      |
| δu時荷重(kN)      | 63.1  | 55.7  | 49.3  | 56.3  | 55.7  | 54.9  | 55.8  | 4.40             |       |       |      |
| δu (mm)        | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 0.00             |       |       |      |
| 降伏耐力 Py (kN)   | 38.4  | 33.6  | 29.7  | 34.5  | 33.5  | 32.1  | 33.6  | 2.87             | 0.085 | 0.801 | 26.9 |
| δy (mm)        | 3.05  | 3.23  | 3.45  | 3.40  | 3.36  | 3.32  | 3.30  | 0.14             |       |       | -    |
| 終局耐力 Pu (kN)   | 57.2  | 49.2  | 43.6  | 50.1  | 49.4  | 48.7  | 49.7  | 4.36             | 0.088 | 0.794 | 39.4 |
| 初期剛性 K (kN/mm) | 12.59 | 10.40 | 8.61  | 10.15 | 9.97  | 9.67  | 10.23 | 1.31             |       |       |      |
| 降伏点変位 δv(mm)   | 4.54  | 4.73  | 5.06  | 4.94  | 4.95  | 5.04  | 4.88  | 0.20             |       |       |      |
| 塑性率 μ=δu/δv    | 4.41  | 4.23  | 3.95  | 4.05  | 4.04  | 3.97  | 4.11  | 0.18             |       |       |      |
| 構造特性係数 Ds      | 0.36  | 0.37  | 0.38  | 0.38  | 0.38  | 0.38  | 0.38  | 0.01             |       |       |      |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。





写真 5.7.2-2 NO.2 HTS9F-1 試験前



写真 5.7.2-3 NO.2 HTS9F-1 試験後



写真 5.7.2-4 NO.2 HTS9F-6 ビス頭のめり込み



写真 5.7.2-6 NO.2 HTS9F-6 ビスの曲げ、木材の支圧



写真 5.7.2-5 NO.2 HTS9F-2 ビスの曲げ、木材の支圧

# 5.7.3. HTS9(全ねじ)

荷重変位曲線を図 5.7.3-1 に、完全弾塑性モデルによる評価結果(1 試験体あたり)を表 5.7.3-1 に、破壊性状を写真 5.7.3-1~写真 5.7.3-6 に示す。ビスが曲げ降伏し、木材の支圧が 確認された。



図 5.7.3-1 荷重変位曲線(1 試験体あたり) 表 5.7.3-1 完全弾塑性モデルによる評価(1 試験体あたり)

| 試験体記号          |       |       | HTS   | 9(正)  |       |       | 亚坎荷   | <b></b> 插淮 / Ē 主 | 亦動反粉  | ばらつき  | 5%   |
|----------------|-------|-------|-------|-------|-------|-------|-------|------------------|-------|-------|------|
| 項目             | 1     | 2     | 3     | 4     | 5     | 6     | 平均恒   | 惊华俪左             | 发到你奴  | 係数    | 下限値  |
| 1/10Pm (kN)    | 5.6   | 5.6   | 6.0   | 5.9   | 5.8   | 6.0   | 5.8   | 0.18             |       |       |      |
| 1/10 δ m (mm)  | 0.47  | 0.41  | 0.53  | 0.47  | 0.46  | 0.47  | 0.47  | 0.04             |       |       |      |
| 2/5Pm (kN)     | 22.5  | 22.4  | 24.1  | 23.5  | 23.2  | 24.0  | 23.3  | 0.73             |       |       |      |
| 2/5δm (mm)     | 3.06  | 3.16  | 4.01  | 3.43  | 3.71  | 3.42  | 3.47  | 0.35             |       |       |      |
| 2/3Pm (kN)     | 37.5  | 37.3  | 40.2  | 39.1  | 38.7  | 39.9  | 38.8  | 1.20             | 0.031 | 0.928 | 36.0 |
| 2/3 δ m (mm)   | 8.15  | 8.81  | 9.83  | 8.61  | 8.96  | 8.54  | 8.82  | 0.57             |       |       |      |
| 9/10Pm (kN)    | 50.6  | 50.4  | 54.3  | 52.8  | 52.2  | 53.9  | 52.4  | 1.63             |       |       |      |
| 9/10 δ m (mm)  | 14.01 | 15.08 | 15.51 | 14.87 | 14.90 | 14.09 | 14.74 | 0.58             |       |       |      |
| Pm (kN)        | 56.2  | 56.0  | 60.3  | 58.7  | 58.0  | 59.9  | 58.2  | 1.81             | 0.031 | 0.928 | 54.0 |
| δ m (mm)       | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 0.00             |       |       |      |
| δu時荷重 (kN)     | 56.2  | 56.0  | 60.3  | 58.7  | 58.0  | 59.9  | 58.2  | 1.81             |       |       |      |
| δu (mm)        | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 0.00             |       |       |      |
| 降伏耐力 Py (kN)   | 25.8  | 25.1  | 26.6  | 27.8  | 27.2  | 27.2  | 26.6  | 1.00             | 0.038 | 0.911 | 24.2 |
| δy (mm)        | 3.91  | 3.98  | 4.83  | 4.62  | 4.91  | 4.29  | 4.42  | 0.43             |       |       |      |
| 終局耐力 Pu (kN)   | 47.5  | 46.3  | 50.4  | 50.1  | 49.9  | 51.3  | 49.3  | 1.92             | 0.039 | 0.909 | 44.8 |
| 初期剛性 K (kN/mm) | 6.60  | 6.31  | 5.51  | 6.02  | 5.54  | 6.34  | 6.05  | 0.45             |       |       |      |
| 降伏点変位 δv(mm)   | 7.20  | 7.34  | 9.15  | 8.32  | 9.01  | 8.09  | 8.19  | 0.82             |       |       |      |
| 塑性率 μ=δu/δv    | 2.78  | 2.72  | 2.19  | 2.40  | 2.22  | 2.47  | 2.46  | 0.25             |       |       |      |
| 構造特性係数 Ds      | 0.47  | 0.47  | 0.54  | 0.51  | 0.54  | 0.50  | 0.51  | 0.03             |       |       |      |

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が20mmまでの荷重で最も大きいものとする。



写真 5.7.3-1 ビス HTS9



写真 5.7.3-3 NO.3 HTS9-1 試験後



写真 5.7.3-5 NO.3 HTS9-2 ビスの曲げ、木材の支圧



写真 5.7.3-2 NO.3 HTS9-1 試験前



写真 5.7.3-4 NO.3 HTS9-1 ビスの曲げ、木材の支圧



写真 5.7.3-6 NO.3 HTS9-6 ビスの曲げ、木材の支圧

#### 5.8. 考察

ビス1本あたりの特性値を比較したものを図 5.8-1~図 5.8-4 に、包絡線を比較したものを 図 5.8-5 に示す。

各試験体を比較した結果、以下のことが分かった。

- ・終局耐力や降伏耐力は STS6.5F が低い結果となった。径の太さに依存していると思われるが、HTS9F と HTS9 を比較すると終局耐力では同程度だったが、降伏耐力では HTSの方が低くなる結果となった。理由としては、半ねじである HTS9F の方が材相互を引き寄せるため、初期剛性が高くなることによって降伏点も高くなるものと思われる。図5.8-5 では、初期剛性が高い HTS9F が円を描くように変位に応じて荷重が上昇していくのに対して、HTS9 は 20kN 付近から降伏している。
- ・前述のとおり同じ呼び径同士であっても半ねじビスである HTS9F の方が全ねじビスである HTS9 よりも初期剛性は高くなる結果となった。
- ・塑性率は STS6.5F が一番高く、HTS9F、HTS9 の順に低くなる結果となった。HTS9 は 早い段階で降伏するのにも関わらず、降伏から最大耐力に至るまでに変形量を要するた め、δ v が大きくなってしまうことが原因と考えられる。







図 5.8-4 塑性率の比較





### 5.9. 同等性の評価

### 5.9.1. 絶対評価

全ねじビス HTS9 による絶対評価の結果を表 5.9.1-1 に、半ねじビス HTS9F による絶対評価の結果を表 5.9.1-2 に、HTPS9 と HTS9F を包絡線で比較したものを図 5.9.1-1 に、基準値の *P*<sub>y</sub> と *P*<sub>max</sub>を加えたものを図 5.9.1-2 に示す。

結果から基準値に対して、全ねじビス HTS9 は降伏耐力 P<sub>y</sub>、20 mm時の最大耐力(以下、「20 P<sub>max</sub>」) 共に基準値の 1.8 倍前後の性能となり、仕様規定の 1 列ビス本数 22 本に対して 13 本打てば同等以上の性能が得られることが分かった。

ー方半ねじビス HTS9F は *P*y が約 2 倍の性能となったが、<sub>20</sub>*P*max は 1.5 倍程度に留まった。結果として基準値の 1 列ビス本数 22 本に対して 15 本必要という結果になった。

半ねじビス HTS9F の 20 *P*max が低かった原因は、図 5.9.1-1、図 5.9.1-2 に示すとおりばら つきが大きかったためであるが、全ねじと比べ、なぜばらつきが大きかったのかは分かって いない。写真 5.7.1-4 は、木材が割裂しているように見えるが、ビス頭のめり込みによって表 層に割れが入っただけであり、耐力に影響を及ぼすような割れではない。

表 5.9.1-1 全ねじビス HTS9 の絶対評価の結果

|  | 評価に必要な特性値          |                                      | ビス1本 | ビス1本あたりの強度性能 1列に打 |       |     |      |  |
|--|--------------------|--------------------------------------|------|-------------------|-------|-----|------|--|
|  |                    |                                      | 基準値  | HTS9              | 対象/基準 | 基準値 | HTS9 |  |
|  | Py                 | Py 5%下限值<br>20P <sub>max</sub> 5%下限值 |      | 3.0               | 1.78  | 22  | 13   |  |
|  | $_{20}P_{\rm max}$ |                                      |      | 6.8               | 1.82  | 22  | 13   |  |
|  |                    |                                      |      |                   |       |     | 13   |  |

表 5.9.1-2 半ねじビス HTS9F の絶対評価の結果

| 電価に必               | 、更た蛙性値 | ビス1本 | ビス1本あたりの強度性能 1列に打つ |       |     |       |  |  |
|--------------------|--------|------|--------------------|-------|-----|-------|--|--|
| 計画に必安な付任値          |        | 基準値  | HTS9F              | 対象/基準 | 基準値 | HTS9F |  |  |
| Py                 | 5%下限值  | 1.7  | 3.4                | 1.98  | 22  | 12    |  |  |
| $_{20}P_{\rm max}$ | 5%下限值  | 3.7  | 5.7                | 1.53  | 22  | 15    |  |  |
|                    |        |      |                    |       |     | 15    |  |  |



図 5.9.1-1 HTS9 と HTS9F の荷重変位曲線の比較



図 5.9.1-2 HTS9、HTS9F 及び基準値の荷重変位曲線の比較(変位 20 mm まで)

#### 5.9.2. 相対評価

全ねじビス HTS9 による相対評価の結果を表 5.9.2-1 に、半ねじビス HTS9F による相対評価の結果を表 5.9.2-2 に、HTPS9、HTS9F 及び STS6.5F を包絡線で比較したものを図 5.9.2-1 に、基準値の *P*<sub>y</sub> と *P*<sub>max</sub> を加えたものを図 5.9.2-2 に示す。

結果からコントロール試験体に対して、全ねじビス HTS9 の降伏耐力  $P_y$ は 1.47 倍だったのに対して、 $_{20}P_{max}$ は 1.67 倍となった。仕様規定の 1 列ビス本数 22 本に対して 15 本打てば同等以上の性能が得られることが分かった。

一方半ねじビス HTS9F は *P*y が 1.63 倍、20*P*max は 1.41 倍となった。結果として使用規定の 1 列ビス本数 22 本に対して 16 本必要という結果になった。

絶対評価に比べ、ビスの必要本数が増した理由は、コントロール試験体である STS6.5F は、基整促で実施した試験結果よりも良かったことが原因である。

|                    | •      | ビス1本                | あたりの強 | 1列に打つ必要本数 |     |      |
|--------------------|--------|---------------------|-------|-----------|-----|------|
| 評価に必               | が要な特性値 | STS6.5F<br>(コントロール) | HTS9  | 対象/基準     | 基準値 | HTS9 |
| Py                 | 5%下限值  | 2.1                 | 3.0   | 1.47      | 22  | 15   |
| $_{20}P_{\rm max}$ | 5%下限值  | 4.0                 | 6.8   | 1.67      | 22  | 14   |
|                    |        |                     |       |           |     | 15   |

表 5.9.2-1 全ねじビス HTS9の相対評価の結果

|                    | -      | ビス1本                | ビス1本あたりの強度性能 1列に打つ |       |     |       |  |  |
|--------------------|--------|---------------------|--------------------|-------|-----|-------|--|--|
| 評価に必               | 必要な特性値 | STS6.5F<br>(コントロール) | HTS9F              | 対象/基準 | 基準値 | HTS9F |  |  |
| Py                 | 5%下限值  | 2.1                 | 3.4                | 1.63  | 22  | 14    |  |  |
| $_{20}P_{\rm max}$ | 5%下限值  | 4.0                 | 5.7                | 1.41  | 22  | 1     |  |  |
|                    |        |                     |                    |       |     | 16    |  |  |

表 5.9.2-2 半ねじビス HTS9F の相対評価の結果



図 5.9.2-1 HTS9、HTS9F 及び STS6.5F の荷重変位曲線の比較



図 5.9.2-2 HTS9、HTS9F、STS6.5F 及び基準値の荷重変位曲線の比較 (変位 20 mmまで)

# 6. 床-梁接合 面材ビス1本あたりの一面せん断特性を算定するための試験

### 6.1. 試験の目的

令和3年度に CLT を面材として用いた床構面のせん断性能について実験と検証を行い、 木造軸組工法住宅の許容応力度設計<sup>3)</sup>における詳細計算法によって、CLT 面材であっても 適用可能であることが確認された。当時のビス仕様は図 6.1-1 のとおり細径(6.5mm)の ビスのデータで実施したが、本事業では施工時のビス本数を減らし、効率的に施工できる ようになることを期待して、全ねじビス・径 9 mmを用いて試験を実施することとした。



図 6.1-1 R3 年に実施した床 CLT 部分利用に使用したビス

# 6.2. 試験の種類

試験の種類は表 6.2-1 のとおりである。

| 通           |          | 面材の種類                   |            |                               | 接合具の種類                     | ·<br>頁                 |                              | =+==> (+==+++ |  |
|-------------|----------|-------------------------|------------|-------------------------------|----------------------------|------------------------|------------------------------|---------------|--|
| し<br>番<br>号 | 試験体名     | 面材規格                    | 厚さ<br>(mm) | 名称                            | 山径または<br>胴部径 <i>d</i> (mm) | 接合具長さ<br><i>1</i> (mm) | 梁への埋め込み<br>長さ <i>l</i> e(mm) | 武駛14数<br>(体)  |  |
| 1           | C090F180 | スギCLT/Mx60-3-3<br>/A種構成 | 90         | ヘクサロビュラ穴付きタッビンねじ<br>HTS9・L180 | 9.0                        | 180                    | 90                           | 3             |  |
| 2           | C150F300 | スギCLT/Mx60-5-5<br>/A種構成 | 150        | ヘクサロビュラ穴付きタッビンねじ<br>HTS9・L300 | 9.0                        | 300                    | 150                          | 3             |  |
| 3           | C210F380 | スギCLT/Mx60-5-7<br>/A種構成 | 210        | ヘクサロビュラ穴付きタッビンねじ<br>HTS9・L380 | 9.0                        | 380                    | 170                          | 3             |  |
| 4           | JF       |                         |            | <br>軸組フレーム試験体                 |                            |                        |                              |               |  |
|             |          |                         |            | 合計                            |                            |                        |                              | 10            |  |

表 6.2-1 試験の種類

# 6.3. 試験体仕様

### (1) ビスの仕様

当該試験で使用した長ビスは図 6.3-1、写真 6.3-1 のとおりである。



2 • 3 <sup>5</sup> 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 teritorindustadanta dan tan harta dan ta 234567892012345678980 2.34 5 6 7 8 9 10 1 



写真 6.3-1 全ねじビス HTS9

### (2) 試験体仕様

各試験体図を図 6.3・2~図 6.3・5 に、試験体の密度と含水率を表 6.3・1 に示す。試験体形 状は文献 3) においては、「標準サイズの面材(3'×6'版等)」と規定されているが、CLT には標準サイズが存在しないこと、強軸・弱軸方向の強度性能への影響が大きいことから、 面材サイズを正方形とした。







図 6.3-3 No.2 C150F300 試験体図



図 6.3-4 No.3 C210F380 試験体図



図 6.3-5 No.4 JF 軸組フレーム試験体図

# 表 6.3-1 密度と含水率

|           | 梁材                         |        | 土台                         | 讨      | 右柱材                        |        | 左杠                         | 主材     | CLTパネル                     |        |
|-----------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|
| 試験体記号     | 密度<br>(g/cm <sup>3</sup> ) | 含水率(%) |
| C90F180-1 | 0.43                       | 9.5    | 0.41                       | 10.0   | 0.42                       | 15.0   | 0.45                       | 11.0   | 0.40                       | 13.0   |
| 2         | 0.41                       | 10.0   | 0.41                       | 11.0   | 0.43                       | 10.0   | 0.42                       | 15.0   | 0.41                       | 14.0   |
| 3         | 0.39                       | 9.5    | 0.42                       | 14.0   | 0.43                       | 14.0   | 0.43                       | 12.0   | 0.41                       | 15.0   |
| 平均値       | 0.41                       | 9.7    | 0.41                       | 11.7   | 0.43                       | 13.0   | 0.43                       | 12.7   | 0.41                       | 14.0   |
| 標準偏差      | 0.02                       | 0.3    | 0.01                       | 2.1    | 0.01                       | 2.6    | 0.02                       | 2.1    | 0.01                       | 1.0    |

### No.1 C90F180

### No.2 C150F300

|            | 梁材                         |        | 土台                         | 土台材    |                            | 右柱材    |                            | 左柱材    |                            | CLTパネル |  |
|------------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|--|
| 試験体記号      | 密度<br>(g/cm <sup>3</sup> ) | 含水率(%) |  |
| C150F300-1 | 0.42                       | 10.0   | 0.40                       | 10.0   | 0.42                       | 14.0   | 0.45                       | 10.5   | 0.41                       | 13.5   |  |
| 2          | 0.41                       | 12.0   | 0.42                       | 12.0   | 0.44                       | 11.5   | 0.42                       | 12.5   | 0.41                       | 13.5   |  |
| 3          | 0.40                       | 10.0   | 0.43                       | 11.5   | 0.43                       | 11.0   | 0.43                       | 12.0   | 0.42                       | 13.0   |  |
| 平均値        | 0.41                       | 10.7   | 0.42                       | 11.2   | 0.43                       | 12.2   | 0.43                       | 11.7   | 0.42                       | 13.3   |  |
| 標準偏差       | 0.01                       | 1.2    | 0.02                       | 1.0    | 0.01                       | 1.6    | 0.02                       | 1.0    | 0.00                       | 0.3    |  |

### No.3 C210F380

|            | 梁材                         |        | 土台                         | 討材     | 右柱材                        |        | 左柱材                        |        | CLTパネル                     |        |
|------------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|
| 試験体記号      | 密度<br>(g/cm <sup>3</sup> ) | 含水率(%) |
| C210F380-1 | 0.42                       | 11.5   | 0.40                       | 13.0   | 0.40                       | 11.0   | 0.44                       | 12.5   | 0.41                       | 12.5   |
| 2          | 0.41                       | 12.0   | 0.42                       | 16.0   | 0.44                       | 10.5   | 0.42                       | 10.0   | 0.42                       | 11.0   |
| 3          | 0.39                       | 10.0   | 0.42                       | 14.0   | 0.42                       | 12.0   | 0.43                       | 13.0   | 0.42                       | 10.0   |
| 平均值        | 0.41                       | 11.2   | 0.41                       | 14.3   | 0.42                       | 11.2   | 0.43                       | 11.8   | 0.42                       | 11.2   |
| 標準偏差       | 0.02                       | 1.0    | 0.01                       | 1.5    | 0.02                       | 0.8    | 0.01                       | 1.6    | 0.00                       | 1.3    |

# No.4 JF

|       | 梁材                         |        | 土台                         | 台材     | 右柱材                        |        | 左柱材                        |        | CLTパネル                     |        |
|-------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|----------------------------|--------|
| 試験体記号 | 密度<br>(g/cm <sup>3</sup> ) | 含水率(%) |
| JF    | 0.41                       | 12.0   | 0.41                       | 10.0   | 0.43                       | 11.0   | 0.43                       | 13.0   | 1                          | _      |
| 平均值   | 0.41                       | 12.0   | 0.41                       | 10.0   | 0.43                       | 11.0   | 0.43                       | 13.0   |                            |        |

# 6.4. 試験方法

試験方法は、文献3)の「4.5 面材くぎ等1本あたりの一面せん断特性を算定するための試験」に準じて柱脚固定式により実施した(写真 6.4-1)。

加力方法は、正負交番加力とし、荷重が 0.8Pmax に落ちるまで計測を行った。



写真 6.4-1 試験方法

# 6.5. 試験結果

### 6.5.1. C090F180

荷重変位曲線を図 6.5.1-1 に、破壊性状を写真 6.5.1-1~写真 6.5.1-10 に示す。ビスが曲げ 降伏し、木材の支圧が確認された。



図 6.5.1-1 荷重変位曲線



写真 6.5.1-1 C90F180 試験前



写真 6.5.1-2 C90F180 試験後



写真 6.5.1-3 C90F180 CLT の回転



写真 6.5.1-4 C90F180 CLT 端部の割れ



写真 6.5.1-5 C90F180 CLT の回転



写真 6.5.1-7 C90F180 軸組み材の割れ



写真 6.5.1-9 C90F180 横架材のめり込み



写真 6.5.1-6 C90F180 解体後



写真 6.5.1-8 C90F180 ビスによる軸組材へ のめり込み



写真 6.5.1-10 C90F180 横架材のビス部のめ り込み(面材端部)

### 6.5.2. C150F300

荷重変位曲線を図 6.5.2-1 に、破壊性状を写真 6.5.2-1~写真 6.5.2-4 に示す。ビスが曲げ降 伏し、木材の支圧が確認された。











写真 6.5.2-3 C150F300 CLT 端部の割れ

写真 6.5.2-2 C150F300 試験後



写真 6.5.2-4 C150F300 横架材の割れ

### 6.5.3. C210F380

荷重変位曲線を図 6.5.3-1 に、破壊性状を写真 6.5.3-1~写真 6.5.3-10 に示す。ビスが曲げ 降伏し、木材の支圧が確認された。



図 6.5.3-1 荷重変位曲線



写真 6.5.3-1 C210F380-1 試験前





写真 6.5.3-3 C210F380-1 CLT 端部の割れ 写真 6.5.3-4 C210F380-1 CLT パネルの回転

写真 6.5.3-2 C210F380-1 試験後







写真 6.5.3-5 C210F380-1 梁の割れ

写真 6.5.3-6 C210F380-1 ホールダウン金物 の変位





写真 6.5.3-7 C210F380-1 ホールダウン金 物の座金部分の木材へのめり込み

写真 6.5.3-8 C210F380-3 ホールダウン金物部 の集合型破壊



写真 6.5.3-9 C210F380-1 解体後



写真 6.5.3-10 C210F380-3 解体後 集合型破壊

# 6.5.4. JF

荷重変位曲線を図 6.5.4-1 に、破壊性状を写真 6.5.4-1~写真 6.5.4-8 に示す。



真のせん断変形角(×10<sup>-3</sup>rad)

図 6.5.4-1 荷重変位曲線



写真 6.5.4-1 JF 試験前



### 写真 6.5.4-2 JF 試験後

### 6.6. グラフの補正方法の検討

本試験では、長尺の全ねじビスを用いているため、図 6.6-1 のようにビスが曲げ降伏した後 からロープ効果によって徐々に荷重が上がっていくという特性を持っている。

このような形状の包絡線の場合、完全弾塑性モデルとして評価しようとすると、適切に評価できない場合がある。

単に  $P_y$ を算定する評価であれば、安全側として  $0.4P_{max}$ を許容耐力とする評価方法も考え られるが、ビス1本あたりの $\Delta P_v$ 、 $\delta_v$ 、 $\delta_u$ 、kが必要となるため、完全弾塑性モデルで評価 することが可能な形状に包絡線を補正する方法の検討を行った。



図 6.6-1 床-梁接合部試験の包絡線

#### 6.6.1. 補正方法の提案

補正方法について(1)~(4)の方法を提案し、完全弾塑性モデルで評価を行った場合 にどの程度評価の値が変わるのか検証を行った。

(1) 初期の凸をカットする補正方法案

0.4Pmax~0.7Pmax あたりの勾配に合わせて、直線を引き、初期の凸をカットする方法 を提案した(図 6.6.1-1)。

算定結果は表 6.6.1-1 のとおりである。算定結果として、C150F300 と C120F380 はほぼ 同じ性能となった。

検討の結果、この方法はビスによる曲げ降伏部分をカットすることになり、元々の特性 を大きく損なってしまうため、不採用となった。



表 6.6.1-1 初期の凸をカットする評価方法による特性値

| 項目              | (                       | C90F18 | 0    | 平均值  | 標準偏差 | ばらつき  | 項目               | 50%下限值     |
|-----------------|-------------------------|--------|------|------|------|-------|------------------|------------|
|                 | 1                       | 2      | 3    |      |      | 係数    |                  |            |
| $\Delta Pv(kN)$ | 12.5                    | 13.4   | 13.9 | 13.3 | 0.71 | 0.975 | $\Delta Pv0$     | 13.0       |
| $\delta v(cm)$  | 2.35                    | 2.15   | 2.41 | 2.30 | 0.14 | 0.972 | δ v0             | 2.24       |
| δ u(cm)         | 6.11                    | 5.18   | 5.45 | 5.58 | 0.48 | 0.960 | δ u0             | 5.36       |
|                 |                         |        |      |      |      |       | $\Delta Pva(kN)$ | 12.3       |
| ∆Pva 及びk        | $d \ddagger \alpha = 0$ | .95 とし | て算出  |      |      |       | k(kN/cm)         | 5.49       |
|                 |                         |        |      |      |      |       |                  |            |
| 西日              | С                       | 150F30 | 0    | 亚柏居  | 播滩眉羊 | ばらつき  | 百日               | 50% 天阳楼    |
| 項目              | 1                       | 2      | 3    | 平均旭  | 悰华俪左 | 係数    | 項日               | 回[知47 1000 |
| $\Delta Pv(kN)$ | 20.2                    | 19.2   | 22.4 | 20.6 | 1.64 | 0.963 | $\Delta Pv0$     | 19.8       |
| $\delta v(cm)$  | 2.75                    | 2.51   | 2.82 | 2.69 | 0.16 | 0.972 | δ v0             | 2.62       |
| δ u(cm)         | 5.04                    | 4.95   | 5.14 | 5.04 | 0.10 | 0.991 | δ u0             | 5.00       |
|                 |                         |        |      |      |      |       | $\Delta Pva(kN)$ | 18.8       |
| ∆Pva 及びk        | はα=0                    | .95 とし | て算出  |      |      |       | k(kN/cm)         | 7.18       |

| 項日                       | С    | 210F38           | 30   | 亚均值  | <b>梗淮</b> 偏羊 | ばらつき     | 項日           | 50%下限值 |
|--------------------------|------|------------------|------|------|--------------|----------|--------------|--------|
| -AL                      | 1    | 2                | 3    | 十多同  | 际中加定         | 係数       | - R I        | 50%1 座 |
| $\Delta Pv(kN)$          | 21.6 | 21.8             | 19.9 | 21.1 | 1.04         | 0.977    | $\Delta Pv0$ | 20.6   |
| δ v(cm)                  | 2.97 | 2.88             | 2.60 | 2.82 | 0.19         | 0.968    | δ v0         | 2.73   |
| δ u(cm)                  | 5.46 | 5.85             | 5.34 | 5.55 | 0.27         | 0.977    | δ u0         | 5.42   |
|                          |      | $\Delta Pva(kN)$ | 19.5 |      |              |          |              |        |
| Δ Pva 及びkは a =0.95 として算出 |      |                  |      |      |              | k(kN/cm) | 7.14         |        |

### (2) 凹みを穴埋めする補正方法案

凹み部分を穴埋めする方法(途中のプロッドを削除して残った点同士を繋げる。)を提 案した(図 6.6.1-2)。

算定結果は表 6.6.1-2 のとおりである。算定結果として、(1)と大きく変わらない結果 となった。

検討の結果、この方法は凹みを埋めてしまうことで、面積が増えることになり、安全側 の評価とは言えないので、不採用となった。



図 6.6.1-2 凹みを穴埋めする評価方法

表 6.6.1-2 凹みを穴埋めする評価方法による特性値

| 佰日              | (    | C90F18           | 0    | 亚均值  | 趰淮偏羊 | ばらつき  | 項日           | 50%下限值   |
|-----------------|------|------------------|------|------|------|-------|--------------|----------|
| 201             | 1    | 2                | 3    | 十名同  | 际中国之 | 係数    | Ř            | 30% 1 座直 |
| $\Delta Pv(kN)$ | 12.2 | 13.2             | 13.6 | 13.0 | 0.72 | 0.974 | $\Delta Pv0$ | 12.7     |
| $\delta v(cm)$  | 1.83 | 1.81             | 1.89 | 1.84 | 0.04 | 0.989 | δ v0         | 1.82     |
| δ u(cm)         | 6.11 | 5.19             | 5.46 | 5.59 | 0.47 | 0.960 | δ u0         | 5.36     |
|                 |      | $\Delta Pva(kN)$ | 12.0 |      |      |       |              |          |
| ∆Pva 及びk        | はα=0 | k(kN/cm)         | 6.59 |      |      |       |              |          |

| C                        | 150F30                                                          | 0                                                                              | 平均值                                                                                                                 | 標準偏差                                                                                                                                                   | ばらつき                                                                                                                                                                                                        | 項目                                                                                                                                                                                                                                                                | 50%下限值                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                        | 2                                                               | 3                                                                              |                                                                                                                     |                                                                                                                                                        | 係级                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |
| 21.5                     | 19.4                                                            | 23.5                                                                           | 21.5                                                                                                                | 2.05                                                                                                                                                   | 0.955                                                                                                                                                                                                       | $\Delta Pv0$                                                                                                                                                                                                                                                      | 20.5                                                                                                                                                                                                                                                                                                                           |
| 2.85                     | 2.47                                                            | 2.92                                                                           | 2.75                                                                                                                | 0.24                                                                                                                                                   | 0.958                                                                                                                                                                                                       | δ v0                                                                                                                                                                                                                                                              | 2.63                                                                                                                                                                                                                                                                                                                           |
| 5.04                     | 4.95                                                            | 5.13                                                                           | 5.04                                                                                                                | 0.09                                                                                                                                                   | 0.992                                                                                                                                                                                                       | δ u0                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                           |
|                          |                                                                 |                                                                                |                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                             | $\Delta Pva(kN)$                                                                                                                                                                                                                                                  | 19.4                                                                                                                                                                                                                                                                                                                           |
| Δ Pva 及びkは α =0.95 として算出 |                                                                 |                                                                                |                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | 7.38                                                                                                                                                                                                                                                                                                                           |
|                          | $\begin{array}{c} & C \\ 1 \\ 21.5 \\ 2.85 \\ 5.04 \end{array}$ | C150F30<br>1 2<br>21.5 19.4<br>2.85 2.47<br>5.04 4.95<br>$\alpha = 0.95 \ge 1$ | C150F300       1     2     3       21.5     19.4     23.5       2.85     2.47     2.92       5.04     4.95     5.13 | C150F300     平均値       1     2     3       21.5     19.4     23.5     21.5       2.85     2.47     2.92     2.75       5.04     4.95     5.13     5.04 | C150F300     平均値     標準偏差       1     2     3     平均値     標準偏差       21.5     19.4     23.5     21.5     2.05       2.85     2.47     2.92     2.75     0.24       5.04     4.95     5.13     5.04     0.09 | C150F300     平均値     標準偏差     ばらつき<br>係数       1     2     3     平均値     標準偏差     ばらつき       21.5     19.4     23.5     21.5     2.05     0.955       2.85     2.47     2.92     2.75     0.24     0.958       5.04     4.95     5.13     5.04     0.09     0.992 | C150F300     平均値     標準偏差     ばらつき<br>係数     項目       1     2     3     平均値     標準偏差     係数     項目       21.5     19.4     23.5     21.5     2.05     0.955     Δ Pv0       2.85     2.47     2.92     2.75     0.24     0.958     δ v0       5.04     4.95     5.13     5.04     0.09     0.992     δ u0       は α=0.95 として算出 |

| 項日              | C                        | 210F38           | 30   | 亚肉值  | <b>趰</b> 淮偪羊 | はらつき  | 項日           | 50%下限值   |
|-----------------|--------------------------|------------------|------|------|--------------|-------|--------------|----------|
| 78.1            | 1                        | 2                | 3    | 十名同  | 际中国生         | 係数    |              | 50%   四直 |
| $\Delta Pv(kN)$ | 22.1                     | 22.6             | 20.1 | 21.6 | 1.32         | 0.971 | $\Delta Pv0$ | 21.0     |
| $\delta v(cm)$  | 3.01                     | 2.96             | 2.58 | 2.85 | 0.24         | 0.961 | δ v0         | 2.74     |
| δ u(cm)         | 5.46                     | 5.85             | 5.33 | 5.55 | 0.27         | 0.977 | δ u0         | 5.42     |
|                 |                          | $\Delta Pva(kN)$ | 19.9 |      |              |       |              |          |
| ∆Pva 及びk        | Δ Pva 及びkは a =0.95 として算出 |                  |      |      |              |       |              | 7.26     |

(3) 終局の凸をカットする補正方法案

終局の凸部分をカットする方法(第2勾配のうち、初期の剛性に合わせて線を引く。) を提案した(図 6.6.1-3)。

算定結果は表 6.6.1-3 のとおりであるが、試したのは C90F180 試験体のみであり、 C150F300 及び C210F380 試験体は未実施である。

検討の結果、*P*maxと面積が小さくなり安全側となるが、終局の凸をカットする線の引き 方が難しく、作成者のさじ加減によるところが大きいため、不採用となった。



図 6.6.1-3 終局の凸をカットする評価方法

| 表 6.6.1-3        | 終局の凸をカッ | トする評価方法による特性値 |
|------------------|---------|---------------|
| <b>A</b> 0.011 0 |         |               |

| Γ | 17 L                    | 項目 C90F180 |                  | 平均值 標進偏差 |      | ばらつき | 按目    |              |          |
|---|-------------------------|------------|------------------|----------|------|------|-------|--------------|----------|
|   | 項日                      | 1          | 2                | 3        | 平均恒  | 悰华偏左 | 係数    | 項目           | 50% 下限10 |
|   | $\Delta Pv(kN)$         | 11.1       | 12.8             | 12.2     | 12.0 | 0.86 | 0.966 | $\Delta Pv0$ | 11.6     |
|   | δ v(cm)                 | 1.90       | 1.85             | 2.01     | 1.92 | 0.08 | 0.980 | δ v0         | 1.88     |
|   | δ u(cm)                 | 6.44       | 5.19             | 5.94     | 5.86 | 0.63 | 0.949 | δ u0         | 5.56     |
|   |                         |            | $\Delta Pva(kN)$ | 11.0     |      |      |       |              |          |
|   | ΔPva 及びkは α =0.95 として算出 |            |                  |          |      |      |       | k(kN/cm)     | 5.85     |

※C150F300、C210F380 試験体は未実施。

#### (4) 面積が等価になるように凹と凸を貫く線を結ぶ補正方法案

考え方としては、(2)に近い。凹み部分を埋めた上で、面積が等価になるように凸 部分を削る方法である(図 6.6.1-4)。

算定結果は表 6.6.1-4 のとおりである。算定結果として、(1)(2)と大きく変わら ない結果となった。

判断も(4)のように難しくなく、危険側の評価にならないと考えれるため、採用と した。



図 6.6.1-4 面積が等価になるように凹と凸を貫く線を結ぶ評価方法

| 表 6.6.1-4 | 面積が等価になる | ように凹と凸を貫 | く線を結ぶ評価方法によ | る特性値 |
|-----------|----------|----------|-------------|------|
|-----------|----------|----------|-------------|------|

| 項目              | C90F180 |          |      | 亚均储   | 趰淮信兰 | ばらつき  | 百日               | 50% 下限值   |
|-----------------|---------|----------|------|-------|------|-------|------------------|-----------|
|                 | 1       | 2        | 3    | 十均恒   | 标单栅左 | 係数    | R P              | 到24°1 %06 |
| $\Delta Pv(kN)$ | 12.2    | 13.0     | 13.4 | 12.9  | 0.61 | 0.978 | $\Delta Pv0$     | 12.6      |
| $\delta v(cm)$  | 1.88    | 1.72     | 1.83 | 1.81  | 0.08 | 0.979 | δ v0             | 1.77      |
| δ u(cm)         | 6.10    | 5.17     | 5.45 | 5. 57 | 0.48 | 0.960 | δ u0             | 5.35      |
|                 |         |          |      |       |      |       | $\Delta Pva(kN)$ | 11.9      |
| ∆Pva 及び         | citα=0  | k(kN/cm) | 6.72 |       |      |       |                  |           |

| 項目              | C<br>1 | 150F30<br>2 | 0 3  | 平均值  | 標準偏差 | ばらつき<br>係数 | 項目               | 50%下限值 |
|-----------------|--------|-------------|------|------|------|------------|------------------|--------|
| $\Delta Pv(kN)$ | 20.6   | 19.2        | 23.3 | 21.0 | 2.08 | 0.953      | $\Delta Pv0$     | 20.0   |
| δ v(cm)         | 2.70   | 2.41        | 2.87 | 2.66 | 0.23 | 0.959      | δ v0             | 2.55   |
| δ u(cm)         | 5.04   | 4.94        | 4.98 | 4.99 | 0.05 | 0.995      | δ u0             | 4.96   |
|                 |        |             |      |      |      |            | $\Delta Pva(kN)$ | 19.0   |
| ∆Pva 及びk        | はα=0   | k(kN/cm)    | 7.45 |      |      |            |                  |        |

C210F380 ばらつき 平均値 標準偏差 項目 50%下限值 項目 係数 1 2 3  $\Delta Pv(kN)$ 0.92 0.980  $\Delta Pv0$ 20.7 21.3 21.9 20.1 21.12.730.980 2.68 $\delta v(cm)$ 2.78 2.81 2.60 0.11  $\delta v0$ 5.550.26 0.978 5.42 $\delta u(cm)$ 5.46 5.84 5.34 δ u0 19.6  $\Delta Pva(kN)$ 

 $\Delta Pva 及びkは \alpha = 0.95 として算出$ 

k(kN/cm)

7.31

# 6.6.2. 補正の結果

補正方法は前項の(4)を採用することとした。結果は下記のとおりである。 包絡線を補正した結果を図 6.6.2-1~図 6.6.2-3 に示す。




## 6.7. 特性値の算出方法の検討

当該試験のグラフ形状は、6.6 項で述べたとおり、ビスが曲げ降伏した後、ロープ効果によ って変位ごとの荷重が徐々に上昇していき、ビスの引き抜き強度が高いものほど、最大耐力 が高くなる(図 6.7-1)。このような包絡線を完全弾塑性モデルによって評価を行うとビスの 曲げ降伏による降伏点より高い位置が降伏耐力として決まってしまう。ところが、文献3) の詳細計算法の試験の評価方法では、完全弾塑性モデルによる評価方法で評価を行うことに なっているため、現在の設計方法では、実際よりも降伏耐力が高く評価されてしまうことに なる。

ビスの曲げ降伏点を適切に評価する評価方法としては、文献4)に記載の初期剛性と2次 剛性の交点から求める方法と、5%オフセットによる方法が考えられる。ただし、本試験にお いては横軸の変形角であるため、接合具径の5%分をオフセットする方法は実施できない。

一方で、ねじ長さを長くすることによって最大耐力が高くなるのに、降伏耐力が一定にな ってしまうことから、最大耐力の高さに見合った降伏耐力(許容耐力)として評価しても良 いのではないかという考え方もある。

以上より、本項では、(1)完全弾塑性モデルによる評価方法と(2)2直線の交点から求 める方法の2通りの評価方法により算出し、両者の相違点について比較検討を行うこととし た。



## (1) 完全弾塑性モデルによる評価の結果











### (2)2直線近似による評価

初期剛性と2次剛性に沿った2つの直線の交点から降伏耐力を求める方法による評価の結 果を図 6.7-5~図 6.7-7 に示す。









(3)特性値の比較

(1) 完全弾塑性モデルによる評価と(2)2直線近似による評価の比較の結果を表 6.7-1 ~6.7-3 に示す。

(1)と(2)の評価を比較したところ下記のとおりの傾向が見られた。

・(1)の $M_y$ は(2)に比べて著しく高い結果となった。

・(1)の剛性は(2)の6割程度になった。

・ (1)の  $M_{\rm u} \times 0.2 \sqrt{(2\mu-1)}$ は(2)の8割程度になった。

C90F180 完全弾塑性 項目 2直線近似 完全/2直線 Mmax (kN/m) 71.8 71.8 1.0 My (k N/m)28.7 16.3 1.8  $\delta y (10^{-3} rad)$ 27.63 9.63 2.9 Mu (kN/m) 63.6 58.5 1.1  $\delta u (10^{-3} rad)$ 185.41 185.41 1.0  $\delta v$  (10<sup>-3</sup>rad) 61.19 34.47 1.8 K (kNm/rad) 1.04 1.70 0.6 0.6 3.03 5.38 μ Mu · 0.2 $\sqrt{(2 \mu - 1)}$  (k N/m) 28.6 36.5 8.0 2/3Mmax (kN/m) 47.9 47.9 1.0 ΔPv (kN) 11.9 11.0 1.1  $\delta v0$  (cm) 1.77 0.98 1.8 1.0 δu0 (cm) 5.35 5.37 k (kN/cm) 6.72 11.22 0.6

#### 表 6.7-1 試験体 C90F180

#### 表 6.7-2 試験体 C150F300

|                                        | C150F300 |        |        |
|----------------------------------------|----------|--------|--------|
| 項目                                     | 完全弾塑性    | 2直線近似  | 完全/2直線 |
| Mmax (kN/m)                            | 111.4    | 111.4  | 1.0    |
| My (kN/m)                              | 46.8     | 15.2   | 3.1    |
| δy (10 <sup>-3</sup> rad)              | 40.12    | 8.25   | 4.9    |
| Mu (kN/m)                              | 104.0    | 88.7   | 1.2    |
| δu (10 <sup>-3</sup> rad)              | 166.10   | 167.79 | 1.0    |
| δν (10 <sup>-3</sup> rad)              | 89.22    | 48.26  | 1.8    |
| K (kNm/rad)                            | 1.16     | 1.85   | 0.6    |
| μ                                      | 1.87     | 3.51   | 0.5    |
| Mu · 0.2 $\sqrt{(2 \mu - 1)}$ ( k N/m) | 34.3     | 43.3   | 0.8    |
| 2/3Mmax (kN/m)                         | 74.3     | 74.3   | 1.0    |
|                                        |          |        |        |
| ΔPv (kN)                               | 19.0     | 16.2   | 1.2    |
| δv0 (cm)                               | 2.55     | 1.34   | 1.9    |
| δu0 (cm)                               | 4.96     | 5.00   | 1.0    |
| k (kN/cm)                              | 7.45     | 12.09  | 0.6    |

|                                       | C210F380 |        |        |
|---------------------------------------|----------|--------|--------|
| 項目                                    | 完全弾塑性    | 2直線近似  | 完全/2直線 |
| Mmax (kN/m)                           | 112.9    | 112.9  | 1.0    |
| My (kN/m)                             | 51.0     | 15.4   | 3.3    |
| δy (10 <sup>-3</sup> rad)             | 44.53    | 8.25   | 5.4    |
| Mu (kN/m)                             | 104.4    | 90.4   | 1.2    |
| δu (10 <sup>-3</sup> rad)             | 184.10   | 184.10 | 1.0    |
| δν (10 <sup>-3</sup> rad)             | 91.11    | 48.29  | 1.9    |
| K (kNm/rad)                           | 1.15     | 1.87   | 0.6    |
| μ                                     | 2.02     | 3.81   | 0.5    |
| Mu · 0.2 $\sqrt{(2 \mu - 1)}$ (k N/m) | 36.4     | 46.6   | 0.8    |
| 2/3Mmax (kN/m)                        | 75.2     | 75.2   | 1.0    |
|                                       |          |        |        |
| ΔPv (kN)                              | 19.6     | 17.0   | 1.2    |
| δv0 (cm)                              | 2.68     | 1.41   | 1.9    |
| δu0 (cm)                              | 5.42     | 5.42   | 1.0    |
| k (kN/cm)                             | 7.31     | 12.06  | 0.6    |

## 表 6.7-3 試験体 C210F380

## (4)採用する評価方法

現時点において、どちらを採用すべきであるか、適切な判断はできない。したがって本検 討の結果については保留とする。

## 7. ビスの引き抜き試験

#### 7.1. 試験の目的

床-床接合、壁-床接合のビス曲げ降伏型のせん断接合部の降伏耐力や最大耐力は日本 建築学会発行「木質構造接合部設計マニュアル」4)より、算定式から算出することができ る。このときの最大耐力は、ビスのロープ効果によって決定され、ビスの引き抜き試験に よる最大耐力の数値が必要となる。

一方、日本建築学会発行「木質構造設計規準・同解説 - 許容応力度・許容耐力設計 - 」 5)では木ねじの許容引抜耐力を算定式から算出することが可能である。しかし、文献5)で 想定している「木ねじ」は、JIS に定める小さなねじ JIS B 1112(十字穴付き木ねじ)及 び JIS B 1125(すりわり付き木ねじ)を想定しており、本事業で扱う「全ねじビス」とはサ イズ感が異なることから実験での検証が必要となった。

#### 7.2. 試験の種類

試験の種類は表 7.2-1 のとおりである。令和5年度事業からの接合方法に対応したもの としている。

各試験体のビスの打ち込み位置と向きの関係を図 7.2-1 に示す。

|    |                |                | CLTの種類       |                                        |      |             | 接合具の種         | 重類         |                  |             |           |
|----|----------------|----------------|--------------|----------------------------------------|------|-------------|---------------|------------|------------------|-------------|-----------|
| 通し |                | CLTの樹          |              |                                        |      |             | ITT 1 ( ) 7 7 | 対象とな       |                  | 試験          | /# +/     |
| 番号 | <u></u> 訊駛14記万 | ℓ/寺被<br>/様成ち   | 層構成          | せん断加                                   | 名称   | 山住<br>d(mm) | 理の込み          | るビスの       | 打ち込み<br>毎 座 (゜ ) | 14-釵<br>(休) | 加考        |
|    |                | 法              | (厚さ)         | り時の臧<br>維方向                            |      | u (mm)      | JX C T(IIIII) | 部位         | 月及( )            | (17.)       |           |
| 1  | PL-90-065'     |                | 3届3プライいト     |                                        |      |             | 65            |            |                  | 3           | Ė_Ė       |
| 2  | PL-90-065      |                | 5/23/ 7 1 攻工 | <del>年</del> 1                         |      |             | 65            | ビス先端       | 00               | 6           | 小 小       |
| 3  | PL-90-095      |                |              | <u>無</u> し                             |      |             | 95            |            | 50               | 6           | バー ノブリブレス |
| 4  | HL-90-105      |                |              |                                        |      |             | 105           | ビス頭        |                  | 1           | 一致口川      |
| 5  | PHS45-094      |                | 「屎「プライ       | 之中                                     |      |             | 94            |            |                  | 6           |           |
| 6  | PHS45-135      |                | 5層57 ノイ      | 5虫甲田                                   |      |             | 135           |            |                  | 6           |           |
| 7  | PHW45-094      | X FULI         |              | 22 56                                  | へんじび |             | 94            | ビス先端       |                  | 6           | 村の父左打らこへ  |
| 8  | PHW45-135      |                |              | 习习早出                                   | 王ねしと | 9           | 135           |            |                  | 6           | 按口用       |
| 9  | PLS45-072      | WIX0U/A<br>插楼式 |              |                                        | ~    |             | 72            |            |                  | 6           | 時 古古時日    |
| 10 | HHS45-065      | 俚俩风            | 3層3ノフィ以上     | 344 #44                                |      |             | 65            |            | 45               | 6           | 壁一直父壁用    |
| 11 | HHS45-120      |                | 3層3プライ以上     | 5虫==================================== |      |             | 120           |            |                  | 3           |           |
| 12 | HHS45-206      |                |              |                                        |      |             | 206           | ヒス頭        |                  | 3           |           |
| 13 | HHW45-206      |                | 5唐5ノフイ       |                                        |      |             | 206           |            |                  | 3           | 壁一床用      |
| 14 | PHW45-100      |                | 3層3プライ想定     | 弱軸                                     |      |             | 100           | 1 2 3 4 44 |                  | 3           |           |
| 15 | PHW45-170      |                | 5層5プライ       |                                        |      |             | 170           | ヒス先端       |                  | 3           |           |
|    |                | •              | •            | 合計                                     | •    |             |               | •          |                  | 67          |           |
|    |                |                |              |                                        |      |             |               |            |                  |             |           |
| )  | -              | Г              |              | C                                      |      | 15          |               |            | <b>00</b>        |             | -         |
| -  |                |                |              |                                        | 4    | 4)          | )             | - ()       | 50               |             |           |

#### 表 7.2-1 ビスの引き抜き試験の種類

ビスの部位 P:ビス先端 L:積層方向 H:ビス頭 H:幅方向

CLT に対する ビスの打ち込み方向

の繊維方向 S: 強軸方向 W:弱軸方向

せん断加力時

ビスの打ち込み角度 ビスの埋め込み長さ

涨ハーフラップ加工 でない仕様

- :区別なし

※ハーフラップ接合部では、ラミナの中央がスライスされるため、CLT 表層の厚さが

15 mmとなるのに対し、加工せず表層 30 mmとした仕様。



# 7.3. 試験体仕様

## (1) ビスの仕様

当該試験で使用した長ビスは図 7.3-1 のとおりである。



# (2) 試験体の密度と含水率

試験体の密度と含水率を表 7.3-1 に示す。

#### 表 7.3-1 密度と含水率

|     | 試験体        | -  |      | 含水   | 率(%) |      | 質量           | 密度      | 試験体 |         | 体 含水率(%)    |    |      |      |      | 質量   | 密度   |          |
|-----|------------|----|------|------|------|------|--------------|---------|-----|---------|-------------|----|------|------|------|------|------|----------|
| No  | 記号         | 番号 | 1    | 2    | 3    | 平均   | (kg)         | (g/cm3) | N   | No      | 記号          | 番号 | 1    | 2    | 3    | 平均   | (kg) | (g/cm3)  |
|     |            | 1  | 8.8  | 9    | 9    | 8.9  | 1.74         | 0.39    |     |         |             | 1  | 8.6  | 8.6  | 8.8  | 8.7  | 2.36 | 0.42     |
|     |            | 2  | 9    | 9.1  | 8.9  | 9.0  | 1.68         | 0.37    |     |         |             | 2  | 8.8  | 8.4  | 8.9  | 8.7  | 2.28 | 0.41     |
|     |            | 3  | 8.6  | 8.9  | 8.7  | 8.7  | 1.72         | 0.38    |     | 0       | DI \$45-079 | 3  | 9.9  | 10.2 | 9.6  | 9.9  | 2.34 | 0.42     |
| 1   | PL-90-065  | 4  |      |      |      |      |              |         |     | 5       | 11545 012   | 4  | 8.7  | 9.7  | 9.8  | 9.4  | 2.24 | 0.40     |
|     |            | 5  |      |      |      |      |              |         |     |         |             | 5  | 8.2  | 10   | 9.6  | 9.3  | 2.3  | 0.41     |
|     |            | 6  |      |      |      |      |              |         |     |         |             | 6  | 9.7  | 9.3  | 10.4 | 9.8  | 2.38 | 0.42     |
|     |            | 1  | 9.1  | 10.9 | 10.3 | 10.1 | 1.64         | 0.44    |     |         |             | 1  | 8.9  | 9.2  | 9    | 9.0  | 2.36 | 0.42     |
|     |            | 2  | 9.8  | 9.7  | 9.9  | 9.8  | 1.7          | 0.45    |     |         |             | 2  | 9.4  | 10   | 10.1 | 9.8  | 2.4  | 0.43     |
| 2   | PI -90-065 | 3  | 10.3 | 9.9  | 9.8  | 10.0 | 1.5          | 0.40    | 1   | 10      | HHS45-065   | 3  | 8.5  | 9.6  | 8.3  | 8.8  | 2.44 | 0.43     |
| 2   | 1L 50 005  | 4  | 9.5  | 9.7  | 9.5  | 9.6  | 1.62         | 0.43    |     |         |             | 4  | 11.1 | 8.6  | 11   | 10.2 | 2.42 | 0.43     |
|     |            | 5  | 9.9  | 10.2 | 9.4  | 9.8  | 1.64         | 0.44    |     |         |             | 5  | 8.9  | 9    | 9.2  | 9.0  | 2.42 | 0.43     |
|     |            | 6  | 11.1 | 10.7 | 10.6 | 10.8 | 1.62         | 0.43    | _   |         |             | 6  | 8.8  | 9.1  | 8.9  | 8.9  | 2.26 | 0.40     |
|     |            | 1  | 7.7  | 8.5  | 8.4  | 8.2  | 2.8          | 0.41    |     |         |             | 1  | 9.7  | 9.2  | 9    | 9.3  | 1.74 | 0.39     |
|     |            | 2  | 8.7  | 9.4  | 9.5  | 9.2  | 2.84         | 0.42    |     |         |             | 2  | 8.1  | 8.1  | 8.8  | 8.3  | 1.82 | 0.40     |
| 3   | PL-90-095  | 3  | 8.7  | 8.2  | 8.1  | 8.3  | 2.82         | 0.42    | 1   | 11      | HHS45-120   | 3  | 9.1  | 9.5  | 9.1  | 9.2  | 1.82 | 0.40     |
| _   |            | 4  | 7.4  | 8.7  | 6.3  | 7.5  | 2.84         | 0.42    |     |         |             | 4  |      |      |      |      |      | <b> </b> |
|     |            | 5  | 8.1  | 8.1  | 7.9  | 8.0  | 2.88         | 0.43    |     |         |             | 5  |      |      |      |      |      |          |
|     |            | 6  | 9.3  | 8.5  | 8.6  | 8.8  | 2.84         | 0.42    | _   |         |             | 6  | -    |      |      |      | 4 40 | 0.10     |
|     |            | 1  | 9.5  | 8.9  | 9.1  | 9.2  | 2.86         | 0.42    |     |         |             | 1  | 9    | 8.8  | 8.7  | 8.8  | 4.68 | 0.42     |
|     |            | 2  |      |      |      |      |              |         |     | 12 HHS4 | HHS45-206   | 2  | 8.5  | 9.1  | 8.7  | 8.8  | 4.92 | 0.44     |
| 4   | HL-90-105  | 3  |      |      |      |      |              |         | 1   |         |             | 3  | 8.3  | 7.9  | 8.1  | 8.1  | 4.62 | 0.41     |
|     |            | 4  |      |      |      |      |              |         |     |         |             | 4  |      |      |      |      |      |          |
|     |            | 5  |      |      |      |      |              |         |     |         |             | 6  |      |      |      |      |      |          |
|     |            | 6  | 0.7  | 0.1  | 0.5  | 0.0  | 2.10         | 0.40    | -   |         |             | 1  | 8.9  | 87   | 78   | 85   | 4.8  | 0.43     |
|     |            | 1  | 0.1  | 9.1  | 0.0  | 0.0  | 5.10<br>2.12 | 0.42    |     |         |             | 2  | 8.1  | 9.7  | 7.5  | 8.4  | 4.66 | 0.41     |
|     |            | 2  | 0.0  | 7.9  | 9.5  | 9.0  | 5.12<br>2.16 | 0.42    |     |         |             | 3  | 8.4  | 8.5  | 8.5  | 8.5  | 4.00 | 0.42     |
| 5   | PHS45-094  | 4  | 9.3  | 9.2  | 8.2  | 8.9  | 3.18         | 0.42    | 1   | 13      | HHW45-206   | 4  | 0.1  | 0.0  | 0.0  | 0.0  |      | 01 12    |
|     |            | 5  | 7.9  | 11.2 | 7.8  | 9.0  | 3.18         | 0.42    |     |         |             | 5  |      |      |      |      |      |          |
|     |            | 6  | 8.4  | 8.7  | 9.2  | 8.8  | 3.28         | 0.44    |     |         |             | 6  |      |      |      |      |      |          |
|     |            | 1  | 11.7 | 10   | 9.6  | 10.4 | 3.18         | 0.42    |     |         |             | 1  | 8.3  | 8.2  | 9.1  | 8.5  | 4.72 | 0.42     |
|     |            | 2  | 8.7  | 7.8  | 8.7  | 8.4  | 3.16         | 0.42    |     |         |             | 2  | 9.2  | 9.1  | 9.9  | 9.4  | 4.78 | 0.42     |
|     |            | 3  | 8.7  | 9.6  | 9.4  | 9.2  | 3.32         | 0.44    |     |         |             | 3  | 9.3  | 9.7  | 9.9  | 9.6  | 4.6  | 0.41     |
| 6   | PHS45-135  | 4  | 12.2 | 11.1 | 8.9  | 10.7 | 3.12         | 0.42    | 1   | 14      | PHW45-100   | 4  |      |      |      |      |      |          |
|     |            | 5  | 8.7  | 11.3 | 9.4  | 9.8  | 3.18         | 0.42    |     |         |             | 5  |      |      |      |      |      |          |
|     |            | 6  | 9    | 11.2 | 8.3  | 9.5  | 3.14         | 0.42    |     |         |             | 6  |      |      |      |      |      |          |
|     |            | 1  | 8.5  | 10.3 | 10.2 | 9.7  | 3.16         | 0.42    |     |         |             | 1  | 9.5  | 10.6 | 9.7  | 9.9  | 4.76 | 0.42     |
|     |            | 2  | 9.4  | 9.1  | 9.7  | 9.4  | 3.16         | 0.42    |     |         |             | 2  | 9.6  | 9.4  | 10   | 9.7  | 4.66 | 0.41     |
| 7   |            | 3  | 11.1 | 11.2 | 9.2  | 10.5 | 3.22         | 0.43    | 1   | 15      | DUW45-170   | 3  | 9.8  | 10.2 | 10   | 10.0 | 4.68 | 0.42     |
| · ' | PHW45-094  | 4  | 9.7  | 10.5 | 8.6  | 9.6  | 3.06         | 0.41    | 1   | 10      | riiw45 170  | 4  |      |      |      |      |      |          |
|     |            | 5  | 7.8  | 8.9  | 9.3  | 8.7  | 3.08         | 0.41    |     |         |             | 5  |      |      |      |      |      |          |
|     |            | 6  | 8.5  | 9    | 9.6  | 9.0  | 3.24         | 0.43    |     |         |             | 6  | 5    |      |      | 5    | -    |          |
|     |            | 1  | 7.7  | 9.5  | 9.9  | 9.0  | 3.1          | 0.41    |     |         |             |    |      |      |      |      |      |          |
|     |            | 2  | 8.3  | 8.8  | 9.4  | 8.8  | 3.04         | 0.41    |     |         |             |    |      |      |      |      |      |          |
| 8   | PHW45-135  | 3  | 10.5 | 8    | 8.3  | 8.9  | 3.06         | 0.41    |     |         |             |    |      |      |      |      |      |          |
|     |            | 4  | 8.4  | 9    | 9.8  | 9.1  | 3.12         | 0.42    |     |         |             |    |      |      |      |      |      |          |
|     |            | 5  | 8.9  | 8.2  | 8.3  | 8.5  | 3.12         | 0.42    |     |         |             |    |      |      |      |      |      |          |
|     |            | 6  | 9.3  | 9.2  | 8    | 8.8  | 3.1          | 0.41    |     |         |             |    |      |      |      |      |      |          |

(3) 試験体仕様

床一床ハーフラップビス接合を想定した引き抜き試験
 試験体 No.1~4はハーフラップビス接合を想定した引き抜き試験である。
 有効ねじ長さ *l*<sub>e</sub>は、ハーフラップビス接合の仕様で決まっている。

■ハーフラップ接合 5層5プライ想定の試験体

想定する接合用途を図 7.3-2 に、試験体仕様を図 7.3-3~図 7.3-4 に示す。 <想定する接合用途>



図 7.3-2 想定する接合用途:床-床ハーフラップビス接合(5層5プライ)





No. 1 PL-90-065'

 $l_{\rm e} = 53$  mm





No. 2 PL-90-065

 $l_{\rm e} \!=\! 53$  mm

No.2との比較試験として、表層ラミナが薄い ことの影響を確認する。

⊠ 7.3-3 No.1 PL-90-065'

図 7.3-4 No.2 PL-90-065

■ハーフラップ接合 5層7プライ想定の試験体

想定する接合用途を図 7.3-5 に、試験体仕様を図 7.3-6~図 7.3-7 に示す。

<想定する接合用途>

ハーフラップ接合 5層7プライ



図 7.3-5 想定する接合用途:床-床ハーフラップビス接合(5層7プライ)



 $l_{\rm e} = 83 \, {\rm mm}$ 

※厳密には上から7層目の繊維方向が試験体 ※有効ねじ長さしをねじ先端側仕様と合わせ とした。

☑ 7.3-6 No.3 PL-90-095

 $l_{\rm e} = 96.5 \, {\rm mm}$ 

と異なるが、ほぼビスの先端なので大過ない ることも考えられたが、実際の仕様に合わせ た。

#### ⊠ 7.3-7 No.4 PL-90-105

#### 2) 床一床斜め交差打ちビス接合を想定した引き抜き試験

試験体 No.5~8 は斜め交差打ちビス接合を想定した引き抜き試験である。 有効ねじ長さ *l*<sub>e</sub>は、斜め交差打ちビス接合の仕様で決まっている。 ■斜め交差打ちビス接合 5層5プライ想定の試験体

想定する接合用途を図 7.3-7 に、試験体仕様を図 7.3-8~図 7.3-9 に示す。 <想定する接合用途>

斜め交差打ちビス接合 5層5プライ



図 7.3-7 想定する接合用途:床-床ハーフラップビス接合(5層5プライ)



 $l_{\rm e} = 82 \, {\rm mm}$ 

 $l_{\rm e} = 82 \, {\rm mm}$ 

※正確にはビス先端 93.5 mm、頭側 86.5 mmだが、そもそも角度が付くと正確には打てないので、試験体は 94 mmに統一した。

🗵 7.3-8 No.5 PHS45-094

☑ 7.3-9 No.7 PHW45-094

■斜め交差打ちビス接合 5層7プライ想定の試験体

想定する接合用途を図 7.3-10 に、試験体仕様を図 7.3-11~図 7.3-12 に示す。

<想定する接合用途>

斜め交差打ちビス接合 5層7プライ



図 7.3-10 想定する接合用途:床-床ハーフラップビス接合(5層7プライ)



☑ 7.3-12 No.8 PHW45-135

125

125

200

250

⊠ 7.3-11 No.6 PHS45-135

- 3)壁一直交壁ビス接合を想定した引き抜き試験
  試験体 No.9~10 は壁一直交壁ビス接合を想定した引き抜き試験である。
  ■斜め交差打ちビス接合 3層3プライ想定の試験体
- 想定する接合用途を図 7.3-13 に、試験体仕様を図 7.3-14~図 7.3-15 に示す。

<想定する接合用途>

斜め交差打ちビス接合 5層5プライ



図 7.3-13 想定する接合用途:壁-直交壁 斜め交差打ちビス接合(3層3プライ)











⊠ 7.3-15 No.10 PLW45-065



No. 09 PLS45-072

 $l_{\rm e} = 60 \, {\rm mm}$ 

☑ 7.3-14 No.9 PLS45-072

### 4) 壁-床斜め打ちビス接合を想定した引き抜き試験

試験体 No.11~15 は壁一床斜め打ち+直交打ちビス接合を想定した引き抜き試験である。

■斜め打ち+直交打ちビス接合 3層3プライ想定の試験体

想定する接合用途を図 7.3-16 に、試験体仕様を図 7.3-17~図 7.3-18 に示す。 <想定する接合用途>

斜め交差打ちビス接合 5層5プライ —床 CLT3層3プライ



図 7.3-16 想定する接合用途:壁-床斜め打ちビス接合 (3層3プライ)







ヘクサビュラ穴付きタッピンねじHTS9-320

 $l_{\rm e} = 111.5 \, {\rm mm}$ 

80

⊠ 7.3-17 No.11 HHS45-120

No. 14 PHW45-100

※試験体の都合により、5層5プライを使用。

1e = 88.0 mm

☑ 7.3-18 No.14 HHS45-206

■斜め打ち+直交打ちビス接合 5層5プライ想定の試験体

想定する接合用途を図 7.3-19 に、試験体仕様を図 7.3-20~図 7.3-22 に示す。



図 7.3-19 想定する接合用途:壁-床斜め打ちビス接合(5層5プライ)







 $l_{\rm e} = 197.5 \, {\rm mm}$ 

※せん断加力時の強軸仕様

⊠ 7.3-20 No.12 HHS45-206



le=197.5 mm ※せん断加力時の弱軸仕様





ヘクサビュラ穴付きタッピンねじHTS9-320、



No. 15 PHW45-170

 $l_{\rm e} = 158 \, {\rm mm}$ 

※せん断加力時の弱軸仕様

☑ 7.3-22 No.15 PHW45-170

# 7.4. 試験方法

試験方法は写真 7.4-1、7.4-2 のとおり、角度に応じて固定治具を使い分ける。 加力は単調加力とし、変位計側はストロークの変位とした。

また、対象となるビスの部位がビス先端の場合は図 7.4-1, ビス頭側の場合は図 7.4-2 の治 具で引き抜きを行った。



写真 7.4-1 引き抜き試験 直角



図 7.4-1 ビス先端用治具



写真 7.4-2 引き抜き試験 斜め



図 7.4-2 ビス頭用治具

# 7.5. 試験結果

7.5.1. 床-床ハーフラップビス接合を想定した引き抜き試験

試験体 No.1~4 までの結果を整理したものである。

各試験体の荷重変位曲線を図 7.5.1-1~図 7.5.1-4 に、評価結果(最大耐力)を表 7.5.1-1 に、破壊性状を写真 7.5.1-1~写真 7.5.1-10 に示す。













図 7.5.1-3 PL90-095 の荷重変位曲線





図 7.5.1-4 PL90-095 の荷重変位曲線 表 7.5.1-1 評価結果(最大耐力)

|            |            | ビス有効 | 試験  |       |       |       |       | <br>最大 | 、耐力(kl | N)   |      |       |       |      |
|------------|------------|------|-----|-------|-------|-------|-------|--------|--------|------|------|-------|-------|------|
| 通し         | 試験体記号      | 長さ   | 体数  | 1     | 2     | 2     | 4     | F      | 6      | ₩.   | 標準偏  | 変動係   | ばらつ   | 5%下  |
| <b>ш</b> 7 |            | (mm) | (体) | T     | 2     | 5     | 4     | 5      | 0      | 十均   | 差    | 数     | き係数   | 限値   |
| 1          | PL-90-065' | 53.0 | 3   | 10.86 | 8.7   | 9.03  |       |        |        | 9.5  | 1.16 | 0.122 | 0.615 | 5.8  |
| 2          | PL-90-065  | 53.0 | 6   | 10.36 | 9.97  | 8.78  | 10.25 | 10.32  | 10.85  | 10.1 | 0.70 | 0.069 | 0.839 | 8.4  |
| 3          | PL-90-095  | 83.0 | 6   | 16.54 | 14.44 | 15.75 | 17.6  | 15.94  | 19.83  | 16.7 | 1.86 | 0.111 | 0.741 | 12.3 |
| 4          | HL-90-105  | 96.5 | 1   | 17.02 |       |       |       |        |        | 17.0 |      |       |       | 0.0  |



写真 7.5.1-1





NO.1 PL90-065'-1 試験前

写真 7.5.1-3 NO.1 PL90-065'-1 解体後

写真 7.5.1-2 NO.1 PL90-065' -1 試験後 表層のめくれ



写真 7.5.1-4 NO.1 PL90-065'-3 試験後 表層のめくれ



NO.2 PL90-065-1 試験後 表層のめくれ 写真 7.5.1-5



NO.3 PL90-095-1 試験後 表層のめくれ 写真 7.5.1-7



NO.2 PL90-065-1 解体後 写真 7.5.1-6



写真 7.5.1-8 NO.3 PL90-095-1 解体後



写真 7.5.1-9 NO.4 HL90-105-1 試験後 表層のめくれ



写真 7.5.1-10 NO.4 HL90-105-1 解体後

# 7.5.2. 床---床斜め交差打ちビス接合を想定した引き抜き試験

試験体 No.5~8 までの結果を整理したものである。

各試験体の荷重変位曲線を図 7.5.2-1~図 7.5.2-4 に、評価結果(最大耐力)を表 7.5.2-1 に、破壊性状を写真 7.5.2-1~写真 7.5.2-10 に示す。



図 7.5.2-1 PHS45-094 の荷重変位曲線





PHS45-135 の荷重変位曲線



5.7 111145 094

図 7.5.2-3 PHW45-094 の荷重変位曲線





図 7.5.2-4 PHW45-135 の荷重変位曲線 表 7.5.2-1 評価結果(最大耐力)

| · ۳.       |           | ビス有効  | 試験  |       | 最大耐力(kN) |       |       |       |       |        |      |       |       |      |  |  |  |
|------------|-----------|-------|-----|-------|----------|-------|-------|-------|-------|--------|------|-------|-------|------|--|--|--|
| 通し         | 試験体記号     | 長さ    | 体数  | 1     | 2        | 2     | Л     | F     | 6     | 111-15 | 標準偏  | 変動係   | ばらつ   | 5%下  |  |  |  |
| ш <b>7</b> |           | (mm)  | (体) | T     | 2        | 3     | 4     | 5     | 0     | 十均     | 差    | 数     | き係数   | 限値   |  |  |  |
| 5          | PHS45-094 | 82.0  | 6   | 10.26 | 10.91    | 11.4  | 12.57 | 12.82 | 14.61 | 12.1   | 1.57 | 0.130 | 0.696 | 8.4  |  |  |  |
| 6          | PHS45-135 | 123.0 | 6   | 22.85 | 21.18    | 21.32 | 34.11 | 18.92 | 24.36 | 23.8   | 5.37 | 0.226 | 0.472 | 11.2 |  |  |  |
| 7          | PHW45-094 | 82.0  | 6   | 16.37 | 16.56    | 17.49 | 13.68 | 19.32 | 16.78 | 16.7   | 1.83 | 0.110 | 0.743 | 12.4 |  |  |  |
| 8          | PHW45-135 | 123.0 | 6   | 30.35 | 21.79    | 22.2  | 22.7  | 24.55 | 24.12 | 24.3   | 3.16 | 0.130 | 0.696 | 16.9 |  |  |  |



写真 7.5.2-1 NO.5 PHS45-094-1 試験前



写真 7.5.2-2 NO.5 PHS45-094-1 試験後 表層のめくれ







写真 7.5.2-4 NO.5 PHS45-094-6 試験後 表層のめくれ



写真 7.5.2-5 NO.6 PHS45-135-1 試験後 表層の押し抜きせん断





写真 7.5.2-7 NO.7 PHW45-094-1 試験後 表層の押し抜きせん断



写真 7.5.2-8 NO.7 PHW45-094-1 解体 後





写真 7.5.2-9 NO.8 素層の

NO.8 PHW45-135-1 試験後 表層のめくれ

写真 7.5.2-10 NO.8 PHW45-135-1 解体後

# 7.5.3. 壁—直交壁ビス接合を想定した引き抜き試験

試験体 No.9~10 までの結果を整理したものである。

各試験体の荷重変位曲線を図 7.5.3·1~図 7.5.3·2 に、評価結果(最大耐力)を表 7.5.3·1 に、破壊性状を写真 7.5.3·1~写真 7.5.3·6 に示す。



図 7.5.3-1 PLS45-072 の荷重変位曲線



No. 10 HHS45-065

| 図 7.5.3 | 3-2 H | HS45-065 | の荷 | 重変 | 位曲線 |
|---------|-------|----------|----|----|-----|
|---------|-------|----------|----|----|-----|

10

表 7.5.3-1 評価結果 (最大耐力)

| ·~ I       |           | ビス有効 | 試験  |      |       |       |      | 最大    | 、耐力(kľ | N)   |      |       |       |     |
|------------|-----------|------|-----|------|-------|-------|------|-------|--------|------|------|-------|-------|-----|
| 一理し        | 試験体記号     | 長さ   | 体数  | 1    | 2     | 2     | 4    | F     | G      | 亚均   | 標準偏  | 変動係   | ばらつ   | 5%下 |
| <b>百</b> つ |           | (mm) | (体) | T    | 2     | 3     | 4    | 5     | 0      | 平均   | 差    | 数     | き係数   | 限値  |
| 9          | PLS45-072 | 60.0 | 6   | 11.7 | 10.26 | 10.91 | 11.4 | 12.57 | 9.83   | 11.1 | 1.00 | 0.090 | 0.790 | 8.7 |
| 10         | HHS45-065 | 56.5 | 6   | 9.16 | 10.58 | 9.45  | 11.2 | 11.99 | 9.81   | 10.4 | 1.09 | 0.106 | 0.752 | 7.7 |



写真 7.5.3-1 NO.9 PLS45-072-1 試験前



写真 7.5.3-2 NO.9 PLS45-072-1 試験後 表層のめくれ



写真 7.5.3-3 NO.9 PLS45-072-1 解体後



NO.9 PLS45-072-6 試験後 写真 7.5.3-4 表層のめくれ



写真 7.5.3-5 NO.10 HHS45-065-1 試験後 写真 7.5.3-6 NO.10 HHS45-065-1 解体後 表層の押し抜きせん断



# 7.5.4. 壁---床斜め打ちビス接合を想定した引き抜き試験

試験体 No.11~15 までの結果を整理したものである。

各試験体の荷重変位曲線を図 7.5.4-1~図 7.5.4-5 に、評価結果(最大耐力)を表 7.5.4-1 に、破壊性状を写真 7.5.4-1~写真 7.5.4-12 に示す。











HHS45-206 の荷重変位曲線



図 7.5.4-3 HHW45-206 の荷重変位曲線



No. 14 PHW45-100





No. 15 PHW45-170

| 図 7.5.4-5 | PHW45-170 | の荷重変位曲線 |
|-----------|-----------|---------|
| 表 7.5.4   | ·1 評価結果   | (最大耐力)  |

| () () () |           | ビス有効  | 試験  | 最大耐力(kN) |       |       |   |   |   |      |      |       |       |      |  |  |
|----------|-----------|-------|-----|----------|-------|-------|---|---|---|------|------|-------|-------|------|--|--|
| 通し       | 試験体記号     | 長さ    | 体数  | 1        | 0     | 2     | 4 | F | G | ₩.H  | 標準偏  | 変動係   | ばらつ   | 5%下  |  |  |
| 〒 つ      |           | (mm)  | (体) | 1        | 2     | 3     | 4 | 5 | 0 | 平均   | 差    | 数     | き係数   | 限値   |  |  |
| 11       | HHS45-120 | 111.5 | 3   | 16.82    | 24.62 | 16.48 |   |   |   | 19.3 | 4.61 | 0.239 | 0.247 | 4.7  |  |  |
| 12       | HHS45-206 | 197.5 | 3   | 33.4     | 33.99 | 34.93 |   |   |   | 34.1 | 0.77 | 0.023 | 0.928 | 31.6 |  |  |
| 13       | HHW45-206 | 197.5 | 3   | 35.32    | 35.63 | 35.91 |   |   |   | 35.6 | 0.30 | 0.008 | 0.975 | 34.7 |  |  |
| 14       | PHW45-100 | 197.5 | 3   | 14.16    | 15.02 | 15.59 |   |   |   | 14.9 | 0.72 | 0.048 | 0.849 | 12.6 |  |  |
| 15       | PHW45-170 | 158.0 | 3   | 32.55    | 27.03 | 30.81 |   |   |   | 30.1 | 2.82 | 0.094 | 0.704 | 21.2 |  |  |



写真 7.5.4-1 No.11 HHS45-120-1 試験前



写真 7.5.4-2 No.11 HHS45-120-1 試験後 表層のめくれ



写真 7.5.4-3 NO.11 HHS45-120-1 解体後 ビス先端側



写真 7.5.4-4 NO.11 HHS45-120-1 解体後 ビス頭部側



写真 7.5.4-5 NO.12 HHS45-206-1 試験後 表層のめくれ



写真 7.5.4-6 NO.12 HHS45-206-1 解体後



写真 7.5.4-7 No.13 HHW45-206-1 試験後 表層のめくれ



写真 7.5.4-8 NO.13 HHW45-206-1 解体後



写真 7.5.4-9 NO.14 PHW45-100-1 試験後 表層のめくれ



写真 7.5.4-11 NO.15 PHW45-170-1 試験後 表層のめくれ



写真 7.5.4-10 NO.14 PHW45-100-1 解体後



写真 7.5.4-12 NO.16 PHW45-170-1 解体後

#### 7.6. 考察

最大耐力一覧表を表 7.6-1 に、最大耐力(試験体ごと)と有効長さの関係を図 7.6-1 に、最 大耐力(平均値)と有効長さの関係を図 7.6-2 に示す。

最大耐力と有効長さは、ビスの打ち込み角度、木材の繊維の向き、CLTの木口方向・積層 方向に関わらず、おおむね比例することが分かった。引き抜き試験の結果はばらつきが大き くなる傾向にあるので、平均値で見比べるとよりはっきり傾向を掴むことができる。

今回は最長で197.5 mmまでの有効ねじ長さとしたが、木材のせん断応力は、せん断長さ方向に徐々に低下していくため、有効ねじ長さが200 mmを超えると徐々に横ばいになっていく可能性がある。

| <u>کہ ا</u> |            | ビス有効  | 試験  |       |       |       |       | 最大    | 大耐力(kl | N)   |      |       |       |      |
|-------------|------------|-------|-----|-------|-------|-------|-------|-------|--------|------|------|-------|-------|------|
| 通し          | 試験体記号      | 長さ    | 体数  | 1     | 2     | 2     | 4     | F     | c      | W 45 | 標準偏  | 変動係   | ばらつ   | 5%下  |
| 百万          |            | (mm)  | (体) | T     | 2     | 3     | 4     | э     | o      | 平均   | 差    | 数     | き係数   | 限値   |
| 1           | PL-90-065' | 53.0  | 3   | 10.86 | 8.7   | 9.03  |       |       |        | 9.5  | 1.16 | 0.122 | 0.615 | 5.8  |
| 2           | PL-90-065  | 53.0  | 6   | 10.36 | 9.97  | 8.78  | 10.25 | 10.32 | 10.85  | 10.1 | 0.70 | 0.069 | 0.839 | 8.4  |
| 3           | PL-90-095  | 83.0  | 6   | 16.54 | 14.44 | 15.75 | 17.6  | 15.94 | 19.83  | 16.7 | 1.86 | 0.111 | 0.741 | 12.3 |
| 4           | HL-90-105  | 96.5  | 1   | 17.02 |       |       |       |       |        | 17.0 |      |       |       | 0.0  |
| 5           | PHS45-094  | 82.0  | 6   | 10.26 | 10.91 | 11.4  | 12.57 | 12.82 | 14.61  | 12.1 | 1.57 | 0.130 | 0.696 | 8.4  |
| 6           | PHS45-135  | 123.0 | 6   | 22.85 | 21.18 | 21.32 | 34.11 | 18.92 | 24.36  | 23.8 | 5.37 | 0.226 | 0.472 | 11.2 |
| 7           | PHW45-094  | 82.0  | 6   | 16.37 | 16.56 | 17.49 | 13.68 | 19.32 | 16.78  | 16.7 | 1.83 | 0.110 | 0.743 | 12.4 |
| 8           | PHW45-135  | 123.0 | 6   | 30.35 | 21.79 | 22.2  | 22.7  | 24.55 | 24.12  | 24.3 | 3.16 | 0.130 | 0.696 | 16.9 |
| 9           | PLS45-072  | 60.0  | 6   | 11.7  | 10.26 | 10.91 | 11.4  | 12.57 | 9.83   | 11.1 | 1.00 | 0.090 | 0.790 | 8.7  |
| 10          | HHS45-065  | 56.5  | 6   | 9.16  | 10.58 | 9.45  | 11.2  | 11.99 | 9.81   | 10.4 | 1.09 | 0.106 | 0.752 | 7.7  |
| 11          | HHS45-120  | 111.5 | 3   | 16.82 | 24.62 | 16.48 |       |       |        | 19.3 | 4.61 | 0.239 | 0.247 | 4.7  |
| 12          | HHS45-206  | 197.5 | 3   | 33.4  | 33.99 | 34.93 |       |       |        | 34.1 | 0.77 | 0.023 | 0.928 | 31.6 |
| 13          | HHW45-206  | 197.5 | 3   | 35.32 | 35.63 | 35.91 |       |       |        | 35.6 | 0.30 | 0.008 | 0.975 | 34.7 |
| 14          | PHW45-100  | 88.0  | 3   | 14.16 | 15.02 | 15.59 |       |       |        | 14.9 | 0.72 | 0.048 | 0.849 | 12.6 |
| 15          | PHW45-170  | 158.0 | 3   | 32.55 | 27.03 | 30.81 |       |       |        | 30.1 | 2.82 | 0.094 | 0.704 | 21.2 |

表 7.6-1 最大耐力一覧表



図 7.6-1 最大耐力(試験体ごと)と 有効長さの関係



図 7.6-2 最大耐力(平均値)と 有効長さの関係

### 8. ビスのせん断接合部における試験値と計算値との比較

### 8.1. 検討の目的

本検討では、全ねじビスを用いた CLT パネル工法用の接合部の設計法の提案を行い、 7.1 項で行ったビスの引き抜き試験の結果等を用いて、せん断接合部の強度性能の推定を行 うことを目的とする。

#### 8.2. 接合部の設計方法(案)

#### 8.2.1. 降伏耐力及び初期剛性の算出

文献4)の3.3構造用ビスの設計方法に準じる。

ただし、支圧強度は繊維平行層、繊維直交層の層構成に応じて、面積按分する。

#### 8.2.2. 最大耐力の算出

文献4)の3.3構造用ビスの設計方法における最大耐力の算定式は式8.2.2-1のとおりである。

ただし、これは半ねじ接合を前提としたものになっているため、全ねじ接合においては *P*<sub>head</sub>の定義をビス頭側の引き抜き抵抗とした上で *P*<sub>w</sub>と同様に「ねじ部の引っ掛かりが急速 に減少する」ものとして 0.75 を乗じることとする。

更に長ビスの場合は正負交番加力によって、降伏時に形成された塑性ヒンジが終局時に折 損するため、埋め込み長さ分のロープ効果は期待できないと考えられる(図 8.2.2・1)。 該 当する降伏モードは写真 8.2.2・1 のとおり、ModeⅢa (若しくは ModeⅢb)、ModeⅣが想 定される。



図 8.2.2-1 正負交番加力によるロープ効果の減少


ModeⅢaModeIV写真 8.2.2-1正負交番加力試験におけるビスの折損

したがって、全ねじ接合で正負交番加力を受けるビス接合部の設計式(案)は式 8.2.2-2 の とおりとした。

ここで、Ppull:ビス先端側における引き抜き抵抗(N) ただし、modeIII、IVの場合は、塑性ヒンジから接合面までの距離に応じた 引き抜き抵抗に低減するものとする。

1) modeⅢ、Ⅳの場合

ここで、Pmax:ビスの引抜試験実験時の最大耐力(kN)

h: 塑性ヒンジから接合面までの距離(mm)

*Ⅰ*:実験時の有効ねじ長さ(mm)

2) modeⅢ、Ⅳ以外の場合

*l*e: 接合部設計における有効ねじ長さ(mm)

Pf-head:ビス頭側における引き抜き抵抗 (N)

ただし、modeⅢ、Ⅳの場合は、塑性ヒンジから接合面までの距離に応じた 引き抜き抵抗に低減するものとする。

1) modeⅢ、Ⅳの場合

2) modeⅢ、Ⅳ以外の場合

$$P_{\text{f-head}} = P_{max} \times l_e / l_0 \qquad \qquad \qquad \vec{\texttt{t}} \ 8.2.2 \cdot 6$$

ただし、斜め交差打ちビス接合の場合(図 8.2.2-2)は、主材と側材の両方にビス頭側接合部とビス先端接合部の両方が存在するので、式 8.2.2-7のとおりとする。



図 8.2.2-2 斜め交差打ちビス接合の場合

# 8.3. ビス埋め込み長さ分のロープ効果が発揮できていないとする根拠

8.2 項は、全ねじビスの降伏時にねじ部分に塑性ヒンジが形成され、正負交番繰り返し加力 を受けることによってビスの折損が引き起こされ、結果として折損部分を除いたねじ部で引 き抜き抵抗をしなければならなくなるため、埋め込み長さ分のロープ効果が発揮できないと いう仮定の下で設計式を提案した。

本項では、接合部実験の結果から、上記の根拠が適当であることを確認することとする。

図 8.3-1 にビスの引抜試験の最大耐力(平均値)と有効ねじ長さの関係を示す。有効ねじ長 さが長くなってもそれに比例して最大耐力は大きくなっていることが分かる。一方で接合部 試験においては図 8.3-2 のとおり有効ねじ長さが大きくなるほど最大耐力の上昇率は小さくな っていることが分かる。

以上より、8.2項における提案式の考え方は適正であると考えられる。



図 8.3-1 引き抜き試験の最大耐力と有効ねじ長さの関係



図 8.3-2 R4~R6年度事業で実施した正負交番加力の全ねじビス接合部試験の最大耐力と 有効ねじ長さの関係

# 8.4. 試験値と計算値の比較

試験値と計算値の比較を行う。計算の前提条件は下記のとおりである。

- ・支圧強度は、R4年度 CLT パネルに長ビスを用いたせん断接合部等の開発事業報告書よ りビスを用いた支圧試験結果の値を用いた。
- ・ビスの引抜強度は、7章(一部 R3 年度)のビスの引抜試験結果の値を用いている。
- ・CLTの支圧強度及び剛性は、層構成に応じて繊維平行層と繊維直交層を面積按分している。

#### 8.4.1.本設計方法案の算定結果

8.2 項に基づき、本設計方法案における特性値の算出を行った。

表 8.4.1-1 に試験値と本設計法案における計算値との比較を示す。8.4.3 項に計算シート を示す。

- ・降伏耐力は±1~2割程度の精度となった。
- ・最大耐力は、全て安全側になった。精度は高くない。これは、全てのビスが塑性化後に 折損するわけではなく、曲がったまま引張抵抗しているビスが残っているため、安全側 の計算になってしまうことが原因と考えられる。
- 初期剛性については計算値方が高めに算出された。施工精度や複数以上のビスを均等に 加力できるわけではないため、計算値の方が高めになってしまうものと思われる。(本 試験に限った話ではない)

| 114 |            |     |           |         |      |      |           |         |      |      |         |      |
|-----|------------|-----|-----------|---------|------|------|-----------|---------|------|------|---------|------|
|     |            |     | 降伏耐       | カ(kN)   |      |      | 最大耐       | カ(kN)   |      | 岡(   | 性(kN/i  | nm)  |
| 番   |            | 試顯  | 剣値        |         |      | 試顯   | <b>倹値</b> |         |      | 試験値  |         |      |
| 号   | 試験体名       | 平均  | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均   | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均   | 計算<br>値 | 計/実  |
| 1   | X90-5-5S   | 4.7 | 3.9       | 4.1     | 0.86 | 9.2  | 7.5       | 6.0     | 0.65 | 1.15 | 1.58    | 1.38 |
| 2   | X90-5-5W   | 3.8 | -         | 4.0     | 1.06 | 7.8  | -         | 6.1     | 0.78 | 0.77 | 1.34    | 1.74 |
| 3   | X90-5-7S   | 4.6 | 4.2       | 4.1     | 0.89 | 10.9 | 10.2      | 6.2     | 0.57 | 0.94 | 1.71    | 1.82 |
| 4   | H90-5-5S   | 4.1 | 3.8       | 4.3     | 1.05 | 8.1  | 6.9       | 6.0     | 0.74 | 1.28 | 1.58    | 1.24 |
| 5   | H90-5-5W   | 3.6 | 3.1       | 4.2     | 1.17 | 8.0  | 7.1       | 7.3     | 0.91 | 0.84 | 1.34    | 1.61 |
| 6   | H90-5-5SH  | 4.9 | 4.8       | 4.5     | 0.93 | 7.3  | 7.2       | 6.0     | 0.82 | 2.05 | 1.78    | 0.87 |
| 7   | H90-5-5SHh | 4.7 | -         | 4.5     | 0.98 | 7.0  | -         | 6.0     | 0.86 | 1.87 | 1.78    | 0.95 |
| 8   | H90-5-7S   | 4.5 | 3.9       | 4.4     | 0.98 | 10.6 | 8.7       | 6.1     | 0.58 | 1.03 | 1.71    | 1.67 |
| 9   | H90-5-7W   | 5.3 | 2.9       | 4.2     | 0.79 | 11.4 | 9.4       | 6.1     | 0.54 | 0.71 | 1.20    | 1.68 |
| 10  | H90–5–7W8d | 7.5 | -         | 4.2     | 0.55 | 12.6 | _         | 6.1     | 0.49 | 0.56 | 1.20    | 2.13 |

表 8.4.1-1 試験値と本設計法案における計算値の比較

## <u>R5 実験値と計算値の比較</u>

|        |          |     | 降伏耐       | カ(kN)       |      |      | 最大耐       | カ(kN)   |      | 剛性(kN/mm) |         |      |
|--------|----------|-----|-----------|-------------|------|------|-----------|---------|------|-----------|---------|------|
| 番      |          | 試顯  | <b>剣値</b> |             |      | 試馬   | <b>剣値</b> |         |      | 試験値       |         |      |
| 」<br>号 | 試験体名     | 平均  | 5%下<br>限値 | 計算<br>値 計/実 |      | 平均   | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均        | 計算<br>値 | 計/実  |
| 1      | X90-5-5W | 4.2 | 3.3       | 4.0         | 0.94 | 8.8  | 6.4       | 6.1     | 0.69 | 0.78      | 1.34    | 1.73 |
| 2      | X90-5-7W | 5.2 | -         | 4.1         | 0.78 | 10.8 | -         | 6.2     | 0.57 | 0.61      | 1.71    | 2.83 |
| 3      | H90-5-5S | 3.9 | 3.5       | 4.3         | 1.10 | 8.5  | 7.3       | 6.0     | 0.70 | 1.16      | 1.58    | 1.37 |
| 4      | H90-5-5W | 3.7 | 3.2       | 4.2         | 1.15 | 8.3  | 6.8       | 7.3     | 0.87 | 0.88      | 1.34    | 1.53 |
| 5      | H90-5-7S | 4.7 | 4.0       | 4.4         | 0.94 | 10.5 | 8.8       | 6.1     | 0.58 | 0.87      | 1.71    | 1.97 |
| 6      | H90-5-7W | 5.6 | 5.0       | 4.2         | 0.75 | 11.7 | 10.1      | 6.1     | 0.53 | 0.68      | 1.20    | 1.77 |

# R6 実験値と計算値の比較

|    |             |     | 降伏耐       | カ(kN)   |      |      | 最大耐       | カ(kN)   |      | 剛性(kN/mm) |      |      |
|----|-------------|-----|-----------|---------|------|------|-----------|---------|------|-----------|------|------|
| 番  | - 5 - 5 - 5 | 試馬  | <b>倹値</b> |         |      | 試馬   | 試験値       |         |      | 試験値       |      |      |
| 日号 | 試験体名        | 平均  | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均   | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均        | 計算 値 | 計/実  |
| 1  | V33S-33S    | 7.0 | 6.2       | 8.3     | 1.19 | 15.6 | 12.8      | 11.9    | 0.76 | 1.33      | 2.92 | 2.19 |
| 2  | ₽33S-33W    | 7.0 | 1         | 8.1     | 1.16 | 14.9 | 13.3      | 11.9    | 0.80 | 1.23      | 2.92 | 2.37 |
| 3  | ₽33₩-33S    | 7.8 | 6.8       | 8.5     | 1.10 | 17.4 | 15.2      | 12.1    | 0.69 | 1.49      | 2.92 | 1.96 |
| 4  | V33W−33W    | 8.3 | 6.2       | 8.4     | 1.00 | 17.5 | 12.8      | 12.1    | 0.69 | 1.28      | 2.92 | 2.29 |

# 8.4.2. 正負交番加力によるビスの折損を考慮しない場合の算定結果

参考として、正負交番加力によるビスの折損を考慮しない場合の算定結果を示す。

(1) 試験値と木質構造接合部設計マニュアル計算値の比較

表 8.4.2-1 に試験値と木質構造接合部設計マニュアル<sup>4)</sup> における計算値との比較を示す。 8.4.3 項に計算シートを示す。

・降伏耐力や初期剛性については、8.4.1 項と同じなので省略する。

 ・最大耐力は、全て危険側になった。ビス埋め込み長さ全長によるロープ効果を発揮する 前にビスが塑性化し、折損するためと思われる。

#### 表 8.4.2-1 試験値と木質構造接合部設計マニュアルに準拠した場合の計算値の比較

|    |            | 降伏耐力(kN) 最大耐力(kN) |           |                                                                      |      |      |           | 剛性(kN/mm) |      |      |         |      |
|----|------------|-------------------|-----------|----------------------------------------------------------------------|------|------|-----------|-----------|------|------|---------|------|
| 番  |            | 試馬                | <b>倹値</b> |                                                                      |      | 試馬   | <b>剣値</b> |           |      | 試験値  |         |      |
| 号  | 試験体名       | 平均                | 5%下<br>限値 | 5%下<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |      | 平均   | 5%下<br>限値 | 計算<br>値   | 計/実  | 平均   | 計算<br>値 | 計/実  |
| 1  | X90-5-5S   | 4.7               | 3.9       | 4.1                                                                  | 0.86 | 9.2  | 7.5       | 13.0      | 1.41 | 1.15 | 1.58    | 1.38 |
| 2  | X90-5-5W   | 3.8               | -         | 4.0                                                                  | 1.06 | 7.8  | -         | 11.9      | 1.52 | 0.77 | 1.34    | 1.74 |
| 3  | X90-5-7S   | 4.6               | 4.2       | 4.1                                                                  | 0.89 | 10.9 | 10.2      | 23.2      | 2.14 | 0.94 | 1.71    | 1.82 |
| 4  | H90-5-5S   | 4.1               | 3.8       | 4.3                                                                  | 1.05 | 8.1  | 6.9       | 11.0      | 1.36 | 1.28 | 1.58    | 1.24 |
| 5  | H90-5-5W   | 3.6               | 3.1       | 4.2                                                                  | 1.17 | 8.0  | 7.1       | 10.9      | 1.37 | 0.84 | 1.34    | 1.61 |
| 6  | H90-5-5SH  | 4.9               | 4.8       | 4.5                                                                  | 0.93 | 7.3  | 7.2       | 11.4      | 1.57 | 2.05 | 1.78    | 0.87 |
| 7  | H90-5-5SHh | 4.7               | -         | 4.5                                                                  | 0.98 | 7.0  | -         | 11.4      | 1.64 | 1.87 | 1.78    | 0.95 |
| 8  | H90-5-7S   | 4.5               | 3.9       | 4.4                                                                  | 0.98 | 10.6 | 8.7       | 17.3      | 1.63 | 1.03 | 1.71    | 1.67 |
| 9  | H90-5-7W   | 5.3               | 2.9       | 4.2                                                                  | 0.79 | 11.4 | 9.4       | 17.2      | 1.51 | 0.71 | 1.20    | 1.68 |
| 10 | H90-5-7W8d | 7.5               | -         | 4.2                                                                  | 0.55 | 12.6 | -         | 17.2      | 1.37 | 0.56 | 1.20    | 2.13 |

<u>R4</u>実験値と計算値の比較

R5 実験値と計算値の比較

|   |          | 降伏耐力(kN) |                                                                         |     |      | 最大耐力(kN) |           |         |      | 剛性(kN/mm) |         |      |  |
|---|----------|----------|-------------------------------------------------------------------------|-----|------|----------|-----------|---------|------|-----------|---------|------|--|
| 番 |          | 試馬       | <b>剣値</b>                                                               |     |      | 試馬       | <b>剣値</b> |         |      | 試験値       |         |      |  |
| 号 | 試験体名     | 平均       | 5%下<br>0 5%下 6 5%下 6 5%下 6 5%下 6 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% |     | 計/実  | 平均       | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均        | 計算<br>値 | 計/実  |  |
| 1 | X90-5-5W | 4.2      | 3.3                                                                     | 4.0 | 0.94 | 8.8      | 6.4       | 11.9    | 1.35 | 0.78      | 1.34    | 1.73 |  |
| 2 | X90-5-7W | 5.2      | -                                                                       | 4.1 | 0.78 | 10.8     | -         | 23.2    | 2.14 | 0.61      | 1.71    | 2.83 |  |
| 3 | H90-5-5S | 3.9      | 3.5                                                                     | 4.3 | 1.10 | 8.5      | 7.3       | 11.0    | 1.30 | 1.16      | 1.58    | 1.37 |  |
| 4 | H90-5-5W | 3.7      | 3.2                                                                     | 4.2 | 1.15 | 8.3      | 6.8       | 10.9    | 1.31 | 0.88      | 1.34    | 1.53 |  |
| 5 | H90-5-7S | 4.7      | 4.0                                                                     | 4.4 | 0.94 | 10.5     | 8.8       | 17.3    | 1.65 | 0.87      | 1.71    | 1.97 |  |
| 6 | H90-5-7W | 5.6      | 5.0                                                                     | 4.2 | 0.75 | 11.7     | 10.1      | 17.2    | 1.48 | 0.68      | 1.20    | 1.77 |  |

#### R6 実験値と計算値の比較

|   | -        |     | 降伏耐       | カ(kN)   |      |      | 最大耐       | カ(kN)   |      | 剛性(kN/mm) |         |      |
|---|----------|-----|-----------|---------|------|------|-----------|---------|------|-----------|---------|------|
| 番 |          | 試勵  | <b>険値</b> |         |      | 試顯   | <b>倹値</b> |         |      | 試験値       |         |      |
| 号 | 試験体名     | 平均  | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均   | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均        | 計算<br>値 | 計/実  |
| 1 | V33S−33S | 7.0 | 6.2       | 8.3     | 1.19 | 15.6 | 12.8      | 28.2    | 1.81 | 1.33      | 2.92    | 2.19 |
| 2 | V33S-33W | 7.0 | -         | 8.1     | 1.16 | 14.9 | 13.3      | 28.2    | 1.89 | 1.23      | 2.92    | 2.37 |
| 3 | ₽33M-33S | 7.8 | 6.8       | 8.5     | 1.10 | 17.4 | 15.2      | 30.5    | 1.75 | 1.49      | 2.92    | 1.96 |
| 4 | V33M−33M | 8.3 | 6.2       | 8.4     | 1.00 | 17.5 | 12.8      | 30.4    | 1.74 | 1.28      | 2.92    | 2.29 |

# (2) 試験値とAIJ 規準計算値の比較

表 8.4.2-2 に試験値と AIJ 規準<sup>5)</sup> における計算値との比較を示す。

- ・降伏耐力や初期剛性については、8.4.1 項と同じなので省略する。
- ・最大耐力は、8.4.1 項の結果に近い値となったが、両者は根拠が異なるので関連性はない と思われる。文献5)は最大耐力ではなく、終局耐力であり、Pyの1.5 倍として求めた 値であるためである。

|    |            |     | 降伏耐       | カ(kN)               |      | - 最  | 大・終居              | 局耐力()                 | <n)< th=""><th colspan="4">剛性(kN/mm)</th></n)<> | 剛性(kN/mm) |         |      |  |
|----|------------|-----|-----------|---------------------|------|------|-------------------|-----------------------|-------------------------------------------------|-----------|---------|------|--|
| 番  |            | 試顯  | <b>剣値</b> |                     |      | 試験   | 直P <sub>max</sub> |                       |                                                 | 試験値       |         |      |  |
| 号  | 試験体名       | 平均  | 5%下<br>限値 | る下<br>種<br>計算<br>計/ |      | 平均   | 5%下<br>限値         | 計算<br>値P <sub>u</sub> | 計/実                                             | 平均        | 計算<br>値 | 計/実  |  |
| 1  | X90-5-5S   | 4.7 | 3.9       | 4.1                 | 0.86 | 9.2  | 7.5               | 6.1                   | 0.66                                            | 1.15      | 1.58    | 1.38 |  |
| 2  | X90-5-5W   | 3.8 | -         | 4.0                 | 1.06 | 7.8  | -                 | 6.0                   | 0.76                                            | 0.77      | 1.34    | 1.74 |  |
| 3  | X90-5-7S   | 4.6 | 4.2       | 4.1                 | 0.89 | 10.9 | 10.2              | 6.2                   | 0.57                                            | 0.94      | 1.71    | 1.82 |  |
| 4  | H90-5-5S   | 4.1 | 3.8       | 4.3                 | 1.05 | 8.1  | 6.9               | 6.5                   | 0.80                                            | 1.28      | 1.58    | 1.24 |  |
| 5  | H90-5-5W   | 3.6 | 3.1       | 4.2                 | 1.17 | 8.0  | 7.1               | 6.3                   | 0.80                                            | 0.84      | 1.34    | 1.61 |  |
| 6  | H90-5-5SH  | 4.9 | 4.8       | 4.5                 | 0.93 | 7.3  | 7.2               | 6.8                   | 0.93                                            | 2.05      | 1.78    | 0.87 |  |
| 7  | H90-5-5SHh | 4.7 | -         | 4.5                 | 0.98 | 7.0  | -                 | 6.8                   | 0.98                                            | 1.87      | 1.78    | 0.95 |  |
| 8  | H90-5-7S   | 4.5 | 3.9       | 4.4                 | 0.98 | 10.6 | 8.7               | 6.6                   | 0.62                                            | 1.03      | 1.71    | 1.67 |  |
| 9  | H90-5-7W   | 5.3 | 2.9       | 4.2                 | 0.79 | 11.4 | 9.4               | 6.3                   | 0.55                                            | 0.71      | 1.20    | 1.68 |  |
| 10 | H90-5-7W8d | 7.5 | -         | 4.2                 | 0.55 | 12.6 | -                 | 6.3                   | 0.50                                            | 0.56      | 1.20    | 2.13 |  |

表 8.4.2-2 試験値と AIJ 規準に準拠した場合の計算値の比較

|   |          |     | 降伏耐力(kN)  |         |      |      | 大・終居              | 局耐力()                                                                                                    | KN)  | 剛性(kN/mm) |         |      |  |
|---|----------|-----|-----------|---------|------|------|-------------------|----------------------------------------------------------------------------------------------------------|------|-----------|---------|------|--|
| 番 |          | 試顯  | <b>検値</b> |         |      | 試験   | 直P <sub>max</sub> |                                                                                                          |      | 試験値       |         |      |  |
| 号 | 試験体名     | 平均  | 5%下<br>限値 | 計算<br>値 | 計/実  | 平均   | 5%下<br>限値         | 5%下<br>强值<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>品<br>の<br>品<br>の<br>品<br>の<br>品<br>の |      | 平均        | 計算<br>値 | 計/実  |  |
| 1 | X90-5-5W | 4.2 | 3.3       | 4.0     | 0.94 | 8.8  | 6.4               | 6.0                                                                                                      | 0.68 | 0.78      | 1.34    | 1.73 |  |
| 2 | X90-5-7W | 5.2 | -         | 4.1     | 0.78 | 10.8 | -                 | 6.2                                                                                                      | 0.57 | 0.61      | 1.71    | 2.83 |  |
| 3 | H90-5-5S | 3.9 | 3.5       | 4.3     | 1.10 | 8.5  | 7.3               | 6.5                                                                                                      | 0.77 | 1.16      | 1.58    | 1.37 |  |
| 4 | H90-5-5W | 3.7 | 3.2       | 4.2     | 1.15 | 8.3  | 6.8               | 6.3                                                                                                      | 0.76 | 0.88      | 1.34    | 1.53 |  |
| 5 | H90-5-7S | 4.7 | 4.0       | 4.4     | 0.94 | 10.5 | 8.8               | 6.6                                                                                                      | 0.63 | 0.87      | 1.71    | 1.97 |  |
| 6 | H90-5-7W | 5.6 | 5.0       | 4.2     | 0.75 | 11.7 | 10.1              | 6.3                                                                                                      | 0.54 | 0.68      | 1.20    | 1.77 |  |

|   |          |     | 降伏耐       | † <mark>カ</mark> (kN) |      | 最    | 大・終居              | 局耐力()                 | kN)  | 剛性(kN/mm) |         |      |
|---|----------|-----|-----------|-----------------------|------|------|-------------------|-----------------------|------|-----------|---------|------|
| 番 |          | 試馬  | <b>剣値</b> |                       |      | 試験   | 直P <sub>max</sub> |                       |      | 試験値       |         |      |
| 号 | │ 試験体名   | 平均  | 5%下<br>限値 | 計算<br>値               | 計/実  | 平均   | 5%下<br>限値         | 計算<br>値P <sub>u</sub> | 計/実  | 平均        | 計算<br>値 | 計/実  |
| 1 | V33S-33S | 7.0 | 6.2       | 8.3                   | 1.19 | 15.6 | 12.8              | 12.4                  | 0.79 | 1.33      | 2.92    | 2.19 |
| 2 | ₽33S-33W | 7.0 | -         | 8.1                   | 1.16 | 14.9 | 13.3              | 12.2                  | 0.82 | 1.23      | 2.92    | 2.37 |
| 3 | V33W-33S | 7.8 | 6.8       | 8.5                   | 1.10 | 17.4 | 15.2              | 12.8                  | 0.73 | 1.49      | 2.92    | 1.96 |
| 4 | ∠33W-33W | 8.3 | 6.2       | 8.4                   | 1.00 | 17.5 | 12.8              | 12.5                  | 0.72 | 1.28      | 2.92    | 2.29 |

# 8.4.3. 本設計法案及び接合部設計マニュアル計算結果シート

参考として、8.4.1 本設計法と8.4.2 のうち接合部設計マニュアルの計算シートを表8.4.3-1 ~8.4.3-3 に示す。 表 8.4.3-1 令和4年度試験 計算シート

|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                                                                           |                                                                                                                                         | -                                                                                                                                       |                         |
|-----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R4                                                                                                                                       | R4                                                                                                                                                                                                              | R4                                                                                                                                    | R4                                                                                                                                                           | R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R4                                                                                                 | R4                                                                                                         | R4                                                                                                                                                        | R4                                                                                                                                      | R4                                                                                                                                      |                         |
|                 |                              | 項目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X90-5-                                                                                                                                   | X90-5-                                                                                                                                                                                                          | X90-5-                                                                                                                                | H90-5-                                                                                                                                                       | H90-5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H90-5-                                                                                             | H90-5-                                                                                                     | H90-5-                                                                                                                                                    | H90-5-                                                                                                                                  | H90-5-                                                                                                                                  | 備考                      |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5S                                                                                                                                       | 5W                                                                                                                                                                                                              | 7S                                                                                                                                    | 5S                                                                                                                                                           | 5W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5SH                                                                                                | 5SHh                                                                                                       | 7S                                                                                                                                                        | 7W                                                                                                                                      | 7W8d                                                                                                                                    |                         |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 釣めな                                                                                                                                      | 釣めな                                                                                                                                                                                                             | 釣めな                                                                                                                                   | N-7                                                                                                                                                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            | N-7                                                                                                                                                       | ∧_7                                                                                                                                     | ~                                                                                                                                       |                         |
|                 |                              | 拉会职士                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 赤ね)又<br>善 + エナ ビ                                                                                                                         | 新祝 スタンズ                                                                                                                                                                                                         | 赤れの)又<br>羊 キエナ ば                                                                                                                      |                                                                                                                                                              | ハーノ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ハーノフツ                                                                                              | ハーノフツ                                                                                                      | ハーノ<br>ニ                                                                                                                                                  | ハーノ                                                                                                                                     |                                                                                                                                         |                         |
|                 |                              | 按古形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 左打りに                                                                                                                                     | 左打りし                                                                                                                                                                                                            | 左打りに                                                                                                                                  | 797E                                                                                                                                                         | フリノヒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ノキねしにフェ                                                                                            | ノキねしヒフ接合                                                                                                   | フリノヒ                                                                                                                                                      | フリノヒ                                                                                                                                    |                                                                                                                                         |                         |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 人技官                                                                                                                                      | 人技合                                                                                                                                                                                                             | 人技官                                                                                                                                   | 人技官                                                                                                                                                          | 人技合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A IS L                                                                                             | A IS L                                                                                                     | 人技官                                                                                                                                                       | 人技官                                                                                                                                     | 人技官                                                                                                                                     |                         |
| 1               |                              | ビスの種類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 全ねじ                                                                                                                                      | 全ねじ                                                                                                                                                                                                             | 全ねじ                                                                                                                                   | 全ねじ                                                                                                                                                          | 全ねじ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 半ねじ                                                                                                | 半ねじ                                                                                                        | 全ねじ                                                                                                                                                       | 全ねじ                                                                                                                                     | 全ねじ                                                                                                                                     |                         |
|                 |                              | ビスの有効径de(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.49                                                                                                                                     | 6.49                                                                                                                                                                                                            | 6.49                                                                                                                                  | 6.49                                                                                                                                                         | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.15                                                                                               | 7.15                                                                                                       | 6.49                                                                                                                                                      | 6.49                                                                                                                                    | 6.49                                                                                                                                    | 谷径×1.1                  |
|                 |                              | ビフの54 (2 d (mm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                        | 0                                                                                                                                                                                                               | 0                                                                                                                                     | 0                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                  | 0                                                                                                          | 0                                                                                                                                                         | 0                                                                                                                                       | 0                                                                                                                                       | Pri tala · · · ·        |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                        | 3                                                                                                                                                                                                               | 3                                                                                                                                     | 9                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                  | 0                                                                                                          | 9                                                                                                                                                         | ฮ                                                                                                                                       | 9                                                                                                                                       |                         |
|                 | ビスの仕                         | ビスの本数(本)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                        | 1                                                                                                                                                                                                               | 1                                                                                                                                     | 1                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                  | 1                                                                                                          | 1                                                                                                                                                         | 1                                                                                                                                       | 1                                                                                                                                       |                         |
|                 | 様                            | ビスの塑性モーメントMp(N/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.5                                                                                                                                     | 46.5                                                                                                                                                                                                            | 46.5                                                                                                                                  | 46.5                                                                                                                                                         | 46.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.5                                                                                               | 46.5                                                                                                       | 46.5                                                                                                                                                      | 46.5                                                                                                                                    | 46.5                                                                                                                                    | R4JIS試験結果より             |
|                 |                              | ビフの其進 対 料 途 度 (N / mm <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1021                                                                                                                                     | 1021                                                                                                                                                                                                            | 1021                                                                                                                                  | 1021                                                                                                                                                         | 1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 763                                                                                                | 763                                                                                                        | 1021                                                                                                                                                      | 1021                                                                                                                                    | 1021                                                                                                                                    | Mp X 6 /do <sup>3</sup> |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1021                                                                                                                                     | 1021                                                                                                                                                                                                            | 1021                                                                                                                                  | 1021                                                                                                                                                         | 1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 703                                                                                                | 703                                                                                                        | 1021                                                                                                                                                      | 1021                                                                                                                                    | 1021                                                                                                                                    | Mp × 0 / de             |
|                 |                              | E人のヤング係致E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 205                                                                                                                                      | 205                                                                                                                                                                                                             | 205                                                                                                                                   | 205                                                                                                                                                          | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 205                                                                                                | 205                                                                                                        | 205                                                                                                                                                       | 205                                                                                                                                     | 205                                                                                                                                     |                         |
|                 |                              | ビスの断面2次モーメント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87                                                                                                                                       | 87                                                                                                                                                                                                              | 87                                                                                                                                    | 87                                                                                                                                                           | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128                                                                                                | 128                                                                                                        | 87                                                                                                                                                        | 87                                                                                                                                      | 87                                                                                                                                      | $\pi \times de^4 / 64$  |
|                 |                              | ビスの全長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                      | 180                                                                                                                                                                                                             | 260                                                                                                                                   | 140                                                                                                                                                          | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                                                                                                | 140                                                                                                        | 200                                                                                                                                                       | 200                                                                                                                                     | 200                                                                                                                                     |                         |
|                 |                              | いいが                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 50                                                                                                                                     | 8 50                                                                                                                                                                                                            | 8 50                                                                                                                                  | 9.50                                                                                                                                                         | 8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                               | 0.00                                                                                                       | 9.50                                                                                                                                                      | 9.50                                                                                                                                    | 9.50                                                                                                                                    |                         |
| 試験1本            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                     | 0.00                                                                                                                                                                                                            | 0.00                                                                                                                                  | 0.00                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                               | 0.00                                                                                                       | 0.00                                                                                                                                                      | 0.00                                                                                                                                    | 0.00                                                                                                                                    |                         |
| の仕様             |                              | ねし先端長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.00                                                                                                                                    | 12.00                                                                                                                                                                                                           | 12.00                                                                                                                                 | 12.00                                                                                                                                                        | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00                                                                                              | 10.00                                                                                                      | 12.00                                                                                                                                                     | 12.00                                                                                                                                   | 12.00                                                                                                                                   |                         |
|                 |                              | ビスの埋め込み長さl(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.1                                                                                                                                     | 88.1                                                                                                                                                                                                            | 129.9                                                                                                                                 | 65.0                                                                                                                                                         | 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.0                                                                                               | 65.0                                                                                                       | 95.0                                                                                                                                                      | 95.0                                                                                                                                    | 95.0                                                                                                                                    |                         |
|                 |                              | 有効ねじ長さle(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.1                                                                                                                                     | 76.1                                                                                                                                                                                                            | 117.9                                                                                                                                 | 53.0                                                                                                                                                         | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.0                                                                                               | 55.0                                                                                                       | 83.0                                                                                                                                                      | 83.0                                                                                                                                    | 83.0                                                                                                                                    | 先端長さをカット(全12mm, 半10mm)  |
|                 | 主材                           | いま(ラギ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.40                                                                                                                                     | 0.41                                                                                                                                                                                                            | 0.40                                                                                                                                  | 0.41                                                                                                                                                         | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41                                                                                               | 0.40                                                                                                       | 0.41                                                                                                                                                      | 0.40                                                                                                                                    | 0.40                                                                                                                                    | 対除仕測点店                  |
|                 | <ul><li>(ビス先端)</li></ul>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                     | 0.41                                                                                                                                                                                                            | 0.43                                                                                                                                  | 0.41                                                                                                                                                         | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41                                                                                               | 0.42                                                                                                       | 0.41                                                                                                                                                      | 0.42                                                                                                                                    | 0.42                                                                                                                                    | 武駅1本測と10                |
|                 | (自1)                         | 繊維方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.50                                                                                                                                    | 29.50                                                                                                                                                                                                           | 29.50                                                                                                                                 | 34.04                                                                                                                                                        | 34.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.04                                                                                              | 34.04                                                                                                      | 34.04                                                                                                                                                     | 34.04                                                                                                                                   | 34.04                                                                                                                                   | R4支圧試験結果より              |
|                 | 6.37                         | 直角方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.86                                                                                                                                    | 23.86                                                                                                                                                                                                           | 23.86                                                                                                                                 | 26.76                                                                                                                                                        | 26.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.76                                                                                              | 26.76                                                                                                      | 26.76                                                                                                                                                     | 26.76                                                                                                                                   | 26.76                                                                                                                                   | R4支圧試験結果より              |
|                 |                              | 素仄改座/N//mm <sup>2</sup> )≫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.24                                                                                                                                    | 26.12                                                                                                                                                                                                           | 27.90                                                                                                                                 | 21.12                                                                                                                                                        | 20.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.12                                                                                              | 21.12                                                                                                      | 21.06                                                                                                                                                     | 29.94                                                                                                                                   | 20.04                                                                                                                                   | 屠機成で按公                  |
|                 |                              | 又庄强度(N/IIII)/※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.24                                                                                                                                    | 20.12                                                                                                                                                                                                           | 27.03                                                                                                                                 | 31.13                                                                                                                                                        | 23.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.15                                                                                              | 51.15                                                                                                      | 31.30                                                                                                                                                     | 20.04                                                                                                                                   | 20.04                                                                                                                                   | 眉 博成で 段力                |
|                 |                              | 有効ねじ長ざle(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.9                                                                                                                                     | 91.9                                                                                                                                                                                                            | 130.1                                                                                                                                 | 75.0                                                                                                                                                         | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.0                                                                                               | 75.0                                                                                                       | 105.0                                                                                                                                                     | 105.0                                                                                                                                   | 105.0                                                                                                                                   |                         |
| 1               | 100 + +                      | 比重(スギ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.43                                                                                                                                     | 0.43                                                                                                                                                                                                            | 0.43                                                                                                                                  | 0.43                                                                                                                                                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43                                                                                               | 0.42                                                                                                       | 0.43                                                                                                                                                      | 0.42                                                                                                                                    | 0.43                                                                                                                                    | 試験体測定値                  |
|                 | 側材                           | 繊維方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.50                                                                                                                                    | 29.50                                                                                                                                                                                                           | 29.50                                                                                                                                 | 34.04                                                                                                                                                        | 34.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.04                                                                                              | 34.04                                                                                                      | 34.04                                                                                                                                                     | 34.04                                                                                                                                   | 34.04                                                                                                                                   | R4支圧試験結果より              |
|                 | (ビス頭                         | 直角方向支压改度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.06                                                                                                                                    | 22.06                                                                                                                                                                                                           | 22.06                                                                                                                                 | 26.76                                                                                                                                                        | 26.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.76                                                                                              | 26.76                                                                                                      | 26.76                                                                                                                                                     | 26 76                                                                                                                                   | 26.76                                                                                                                                   | R4支圧試驗結果 FU             |
|                 | 側)                           | 三方刀門又仁强度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.00                                                                                                                                    | 20.00                                                                                                                                                                                                           | 23.00                                                                                                                                 | 20.70                                                                                                                                                        | 20.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.70                                                                                              | 20.70                                                                                                      | 20.70                                                                                                                                                     | 20.70                                                                                                                                   | 20.70                                                                                                                                   | ロース山山駅和木より              |
| 1               |                              | 支圧強度(N/mm <sup>2</sup> )※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.24                                                                                                                                    | 26.12                                                                                                                                                                                                           | 27.89                                                                                                                                 | 31.13                                                                                                                                                        | 29.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.13                                                                                              | 31.13                                                                                                      | 31.96                                                                                                                                                     | 28.84                                                                                                                                   | 28.84                                                                                                                                   | <b>暦構成で</b> 按分          |
|                 |                              | スギのヤング係数En(Kn/mm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                        | 7                                                                                                                                                                                                               | 7                                                                                                                                     | 7                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                  | 7                                                                                                          | 7                                                                                                                                                         | 7                                                                                                                                       | 7                                                                                                                                       | 1                       |
|                 |                              | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,208                                                                                                                                    | 1,208                                                                                                                                                                                                           | 1,104                                                                                                                                 | 1,415                                                                                                                                                        | 1,415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,364                                                                                              | 1,364                                                                                                      | 1,265                                                                                                                                                     | 1,265                                                                                                                                   | 1,265                                                                                                                                   |                         |
| 1               | 反告                           | ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                                                                           |                                                                                                                                         |                                                                                                                                         | 1                       |
| 1               | 除奴                           | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                        | 1                                                                                                                                                                                                               | 1                                                                                                                                     | 1                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                  | 1                                                                                                          | 1                                                                                                                                                         | 1                                                                                                                                       | 1                                                                                                                                       |                         |
|                 |                              | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.463                                                                                                                                   | 39.081                                                                                                                                                                                                          | 36.597                                                                                                                                | 32.788                                                                                                                                                       | 34.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.521                                                                                             | 24.521                                                                                                     | 31.935                                                                                                                                                    | 35.390                                                                                                                                  | 35.390                                                                                                                                  |                         |
|                 |                              | Ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.208                                                                                                                                    | 1.208                                                                                                                                                                                                           | 1.104                                                                                                                                 | 1.415                                                                                                                                                        | 1.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.364                                                                                              | 1.364                                                                                                      | 1.265                                                                                                                                                     | 1.265                                                                                                                                   | 1.265                                                                                                                                   |                         |
| 1               |                              | Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                        | 1                                                                                                                                                                                                               | 1                                                                                                                                     | 1                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                  | 1                                                                                                          | 1                                                                                                                                                         | 1                                                                                                                                       | 1                                                                                                                                       | 1                       |
|                 | Ar 10.0 · · ·                | л.<br>т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.401                                                                                                                                    | 0.401                                                                                                                                                                                                           | 0.407                                                                                                                                 | 0.510                                                                                                                                                        | 0.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.400                                                                                              | 0.400                                                                                                      | 0.4                                                                                                                                                       | 0.4                                                                                                                                     | 0.4                                                                                                                                     | 1                       |
| EVT=            | 各降伏                          | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.461                                                                                                                                    | 0.461                                                                                                                                                                                                           | 0.437                                                                                                                                 | 0.513                                                                                                                                                        | 0.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499                                                                                              | 0.499                                                                                                      | 0.4/5                                                                                                                                                     | 0.4/5                                                                                                                                   | 0.4/5                                                                                                                                   |                         |
| 山土结             | モードの値                        | Шa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.377                                                                                                                                    | 0.379                                                                                                                                                                                                           | 0.352                                                                                                                                 | 0.411                                                                                                                                                        | 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.399                                                                                              | 0.399                                                                                                      | 0.365                                                                                                                                                     | 0.368                                                                                                                                   | 0.368                                                                                                                                   |                         |
| 山川和             |                              | Πb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.440                                                                                                                                    | 0.441                                                                                                                                                                                                           | 0.384                                                                                                                                 | 0.528                                                                                                                                                        | 0.531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.504                                                                                              | 0.504                                                                                                      | 0.447                                                                                                                                                     | 0.450                                                                                                                                   | 0.450                                                                                                                                   |                         |
| 未               |                              | π7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.201                                                                                                                                    | 0.200                                                                                                                                                                                                           | 0 102                                                                                                                                 | 0.405                                                                                                                                                        | 0.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.272                                                                                              | 0.272                                                                                                      | 0.255                                                                                                                                                     | 0.260                                                                                                                                   | 0.260                                                                                                                                   |                         |
|                 |                              | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.301                                                                                                                                    | 0.308                                                                                                                                                                                                           | 0.192                                                                                                                                 | 0.403                                                                                                                                                        | 0.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.372                                                                                              | 0.372                                                                                                      | 0.233                                                                                                                                                     | 0.209                                                                                                                                   | 0.209                                                                                                                                   |                         |
|                 | 除伏モード                        | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.301                                                                                                                                    | 0.308                                                                                                                                                                                                           | 0.192                                                                                                                                 | 0.405                                                                                                                                                        | 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.372                                                                                              | 0.372                                                                                                      | 0.255                                                                                                                                                     | 0.269                                                                                                                                   | 0.269                                                                                                                                   |                         |
|                 |                              | mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                        | IV                                                                                                                                                                                                              | IV                                                                                                                                    | IV                                                                                                                                                           | Ша                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N                                                                                                  | IV                                                                                                         | N                                                                                                                                                         | IV                                                                                                                                      | IV                                                                                                                                      |                         |
|                 |                              | 際代耐力nv(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.06                                                                                                                                     | 3.97                                                                                                                                                                                                            | 4 10                                                                                                                                  | 4 33                                                                                                                                                         | 4 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 55                                                                                               | 4 55                                                                                                       | 4 39                                                                                                                                                      | 417                                                                                                                                     | 417                                                                                                                                     |                         |
|                 | 符合结用                         | 王材の塑性ビンンor回転中心の接                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.00                                                                                                                                    | 00.40                                                                                                                                                                                                           | 00.67                                                                                                                                 | 01.40                                                                                                                                                        | 27.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.44                                                                                              | 00.44                                                                                                      | 01.17                                                                                                                                                     | 00.00                                                                                                                                   | 00.00                                                                                                                                   |                         |
|                 | 昇正結果                         | 命贡办家和毕养你的最近的法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.93                                                                                                                                    | 23.42                                                                                                                                                                                                           | 22.67                                                                                                                                 | 21.46                                                                                                                                                        | 37.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.44                                                                                              | 20.44                                                                                                      | 21.17                                                                                                                                                     | 22.29                                                                                                                                   | 22.29                                                                                                                                   |                         |
|                 |                              | 時代の主任ビジジの回転中心の没<br>みまかとの明朝(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.71                                                                                                                                    | 28.30                                                                                                                                                                                                           | 25.02                                                                                                                                 | 30.36                                                                                                                                                        | 31.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.87                                                                                              | 27.87                                                                                                      | 26.79                                                                                                                                                     | 28.20                                                                                                                                   | 28.20                                                                                                                                   |                         |
|                 | -                            | k0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                     | 0.07                                                                                                                                                                                                            | 0.07                                                                                                                                  | 0.07                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                                                                                               | 0.06                                                                                                       | 0.07                                                                                                                                                      | 0.07                                                                                                                                    | 0.07                                                                                                                                    |                         |
|                 | -                            | k90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                     | 0.02                                                                                                                                                                                                            | 0.02                                                                                                                                  | 0.02                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                               | 0.02                                                                                                       | 0.02                                                                                                                                                      | 0.02                                                                                                                                    | 0.02                                                                                                                                    |                         |
|                 |                              | K30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                     | 0.02                                                                                                                                                                                                            | 0.02                                                                                                                                  | 0.02                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                               | 0.02                                                                                                       | 0.02                                                                                                                                                      | 0.02                                                                                                                                    | 0.02                                                                                                                                    |                         |
|                 |                              | \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.32                                                                                                                                     | 0.32                                                                                                                                                                                                            | 0.32                                                                                                                                  | 0.32                                                                                                                                                         | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.33                                                                                               | 0.33                                                                                                       | 0.32                                                                                                                                                      | 0.32                                                                                                                                    | 0.32                                                                                                                                    | K0とK90を面積按分             |
|                 |                              | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27                                                                                                                                     | 0.27                                                                                                                                                                                                            | 0.27                                                                                                                                  | 0.27                                                                                                                                                         | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.27                                                                                               | 0.27                                                                                                       | 0.27                                                                                                                                                      | 0.27                                                                                                                                    | 0.27                                                                                                                                    | K0とK90を面積按分             |
|                 |                              | λ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.046                                                                                                                                    | 0.046                                                                                                                                                                                                           | 0.046                                                                                                                                 | 0.046                                                                                                                                                        | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.042                                                                                              | 0.042                                                                                                      | 0.046                                                                                                                                                     | 0.046                                                                                                                                   | 0.046                                                                                                                                   |                         |
| 弾性床             |                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.044                                                                                                                                    | 0.044                                                                                                                                                                                                           | 0.044                                                                                                                                 | 0.044                                                                                                                                                        | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.040                                                                                              | 0.040                                                                                                      | 0.044                                                                                                                                                     | 0.044                                                                                                                                   | 0.044                                                                                                                                   |                         |
| 上の梁             | 係数                           | λ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.044                                                                                                                                    | 0.044                                                                                                                                                                                                           | 0.044                                                                                                                                 | 0.044                                                                                                                                                        | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.040                                                                                              | 0.040                                                                                                      | 0.044                                                                                                                                                     | 0.044                                                                                                                                   | 0.044                                                                                                                                   |                         |
| 理論 出            |                              | Ľ <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.144                                                                                                                                    | 0.144                                                                                                                                                                                                           | 0.144                                                                                                                                 | 0.151                                                                                                                                                        | 0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.136                                                                                              | 0.136                                                                                                      | 0.144                                                                                                                                                     | 0.144                                                                                                                                   | 0.144                                                                                                                                   |                         |
|                 |                              | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.165                                                                                                                                    | 0.165                                                                                                                                                                                                           | 0.165                                                                                                                                 | 0.165                                                                                                                                                        | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.147                                                                                              | 0.147                                                                                                      | 0.165                                                                                                                                                     | 0.165                                                                                                                                   | 0.165                                                                                                                                   |                         |
| 7.64本           |                              | P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.007                                                                                                                                    | 0.007                                                                                                                                                                                                           | 0.007                                                                                                                                 | 0.007                                                                                                                                                        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006                                                                                              | 0.006                                                                                                      | 0.007                                                                                                                                                     | 0.007                                                                                                                                   | 0.007                                                                                                                                   |                         |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007                                                                                                                                    | 0.007                                                                                                                                                                                                           | 0.007                                                                                                                                 | 0.007                                                                                                                                                        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                              | 0.000                                                                                                      | 0.007                                                                                                                                                     | 0.007                                                                                                                                   | 0.007                                                                                                                                   |                         |
|                 |                              | J <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.007                                                                                                                                    | 0.007                                                                                                                                                                                                           | 0.007                                                                                                                                 | 0.007                                                                                                                                                        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006                                                                                              | 0.006                                                                                                      | 0.007                                                                                                                                                     | 0.007                                                                                                                                   | 0.007                                                                                                                                   |                         |
|                 |                              | k'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                    | 0.000                                                                                                                                                                                                           | 0.000                                                                                                                                 | 0.000                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                              | 0.000                                                                                                      | 0.000                                                                                                                                                     | 0.000                                                                                                                                   | 0.000                                                                                                                                   |                         |
|                 |                              | Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                    | 0.000                                                                                                                                                                                                           | 0.000                                                                                                                                 | 0.000                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                              | 0.000                                                                                                      | 0.000                                                                                                                                                     | 0.000                                                                                                                                   | 0.000                                                                                                                                   |                         |
|                 |                              | 副件保護 Ke(N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.62                                                                                                                                     | 1.62                                                                                                                                                                                                            | 1.62                                                                                                                                  | 1 5 8                                                                                                                                                        | 1 5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 76                                                                                               | 1 76                                                                                                       | 1.62                                                                                                                                                      | 1.62                                                                                                                                    | 1.62                                                                                                                                    |                         |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.02                                                                                                                                     | 1.02                                                                                                                                                                                                            | 1.02                                                                                                                                  | 1.00                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70                                                                                               | 1.70                                                                                                       | 1.02                                                                                                                                                      | 1.02                                                                                                                                    | 1.02                                                                                                                                    |                         |
|                 | 主材:引き                        | K05)さ抜さ試験 試験体名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.7                                                                                                                                     | No.5                                                                                                                                                                                                            | No.6                                                                                                                                  | No.2                                                                                                                                                         | No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.2                                                                                               | No.2                                                                                                       | No.3                                                                                                                                                      | No.3                                                                                                                                    | No.3                                                                                                                                    | 4                       |
| 1               | 抜き実験                         | 引き抜き試験平均値(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.70                                                                                                                                    | 12.10                                                                                                                                                                                                           | 23.80                                                                                                                                 | 10.10                                                                                                                                                        | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.10                                                                                              | 10.10                                                                                                      | 16.70                                                                                                                                                     | 16.70                                                                                                                                   | 16.70                                                                                                                                   | J                       |
|                 | 値                            | 実験時の有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.00                                                                                                                                    | 82.00                                                                                                                                                                                                           | 123.00                                                                                                                                | 53.00                                                                                                                                                        | 53.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.00                                                                                              | 53.00                                                                                                      | 83.00                                                                                                                                                     | 83.00                                                                                                                                   | 83.00                                                                                                                                   |                         |
|                 | /Bil++                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                        | NI- 7                                                                                                                                                                                                           | NI- 0                                                                                                                                 | NI. 0                                                                                                                                                        | NI - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N - 0                                                                                              | NI. 0                                                                                                      | NI. 4                                                                                                                                                     | N - 4                                                                                                                                   | NI - 4                                                                                                                                  | R6引き抜き要素試験結果            |
|                 | 1側材: 引き                      | 10512 坂2 武駅 武駅14名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.5                                                                                                                                     | No./                                                                                                                                                                                                            | No.8                                                                                                                                  | No.2                                                                                                                                                         | No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.2                                                                                               | No.2                                                                                                       | No.4                                                                                                                                                      | No.4                                                                                                                                    | No.4                                                                                                                                    | 1                       |
| 1               | 抜き実験                         | 引き抜き試験平均値(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.10                                                                                                                                    | 16.70                                                                                                                                                                                                           | 24.30                                                                                                                                 | 10.10                                                                                                                                                        | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.10                                                                                              | 10.10                                                                                                      | 17.02                                                                                                                                                     | 17.02                                                                                                                                   | 17.02                                                                                                                                   | 4                       |
| 1               | 値                            | 実験時の有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.00                                                                                                                                    | 82.00                                                                                                                                                                                                           | 123.00                                                                                                                                | 53.00                                                                                                                                                        | 53.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.00                                                                                              | 53.00                                                                                                      | 96.50                                                                                                                                                     | 96.50                                                                                                                                   | 96.50                                                                                                                                   | 1                       |
|                 |                              | 主:引き抜き用有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.93                                                                                                                                    | 23.42                                                                                                                                                                                                           | 22.67                                                                                                                                 | 21.46                                                                                                                                                        | 37.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.44                                                                                              | 20.44                                                                                                      | 21.17                                                                                                                                                     | 22.29                                                                                                                                   | 22.29                                                                                                                                   |                         |
|                 |                              | 主・引き抜き論度長さ換公(レNI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167                                                                                                                                      | 3 / 6                                                                                                                                                                                                           | 1 20                                                                                                                                  | 4.00                                                                                                                                                         | 7 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00                                                                                               | 2 00                                                                                                       | 1.00                                                                                                                                                      | 1 10                                                                                                                                    | 1 10                                                                                                                                    | 長さ坊分                    |
|                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0/                                                                                                                                     | 3.40                                                                                                                                                                                                            | 4.39                                                                                                                                  | 4.09                                                                                                                                                         | /.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.90                                                                                               | 3.90                                                                                                       | 4.20                                                                                                                                                      | 4.48                                                                                                                                    | 4.48                                                                                                                                    | жскл                    |
| 1               | *=1.=1:+                     | 側:引き抜き用有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.71                                                                                                                                    | 28.30                                                                                                                                                                                                           | 25.02                                                                                                                                 | 30.36                                                                                                                                                        | 31.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                                                            | 26.79                                                                                                                                                     | 28.20                                                                                                                                   | 28.20                                                                                                                                   |                         |
|                 | <b>平</b> 政訂法                 | 側:引き抜き強度長さ按分(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.09                                                                                                                                     | 5.76                                                                                                                                                                                                            | 4.94                                                                                                                                  | 5.79                                                                                                                                                         | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    | -                                                                                                          | 4.72                                                                                                                                                      | 4.97                                                                                                                                    | 4.97                                                                                                                                    |                         |
| 最大耐             | 亲                            | 引き抜き強度(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.38                                                                                                                                     | 4.61                                                                                                                                                                                                            | 4 66                                                                                                                                  | 4 0 9                                                                                                                                                        | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 90                                                                                               | 3 90                                                                                                       | 4 26                                                                                                                                                      | 4 4 8                                                                                                                                   | 4 4 8                                                                                                                                   |                         |
| 力等の             | 昇正結果                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E 07                                                                                                                                     | 8 00                                                                                                                                                                                                            | £ 01                                                                                                                                  | E 0.0                                                                                                                                                        | 7 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 00                                                                                               | E 00                                                                                                       | A 10                                                                                                                                                      | £ 19                                                                                                                                    | 819                                                                                                                                     |                         |
| 算定              |                              | 本人前 JFmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07                                                                                                                                     | 0.08                                                                                                                                                                                                            | 0.21                                                                                                                                  | 0.00                                                                                                                                                         | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                               | 0.88                                                                                                       | 0.12                                                                                                                                                      | 0.13                                                                                                                                    | 0.13                                                                                                                                    | l                       |
| 1               |                              | ——次開性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                     | 0.12                                                                                                                                                                                                            | 0.13                                                                                                                                  | 0.11                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.12                                                                                               | 0.12                                                                                                       | 0.13                                                                                                                                                      | 0.12                                                                                                                                    | 0.12                                                                                                                                    | 1                       |
| 1               |                              | δ max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.80                                                                                                                                    | 20.93                                                                                                                                                                                                           | 18.58                                                                                                                                 | 16.86                                                                                                                                                        | 31.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.17                                                                                              | 14.17                                                                                                      | 16.10                                                                                                                                                     | 19.58                                                                                                                                   | 19.58                                                                                                                                   |                         |
|                 |                              | 主:引き抜き用有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.08                                                                                                                                    | 76.08                                                                                                                                                                                                           | 117.89                                                                                                                                | 53.00                                                                                                                                                        | 53.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.00                                                                                              | 55.00                                                                                                      | 83.00                                                                                                                                                     | 83.00                                                                                                                                   | 83.00                                                                                                                                   |                         |
| 1               |                              | 主·引き抜き途産星3世公(LM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.40                                                                                                                                    | 11 00                                                                                                                                                                                                           | 22.01                                                                                                                                 | 10.10                                                                                                                                                        | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.40                                                                                              | 10.40                                                                                                      | 16 70                                                                                                                                                     | 16 70                                                                                                                                   | 16 70                                                                                                                                   | 長さ按公                    |
|                 |                              | エ・コピ版と強度女ど技力(KN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.49                                                                                                                                    | · · · · / / 3                                                                                                                                                                                                   | L 22.0                                                                                                                                | 1 10.10                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.48                                                                                              | 10.48                                                                                                      | 1 10.70                                                                                                                                                   | 10.70                                                                                                                                   | 1 10./0                                                                                                                                 | 13,015,7                |
|                 | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | 11.20                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                              | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                                                            |                                                                                                                                                           |                                                                                                                                         |                                                                                                                                         |                         |
|                 |                              | <u>側:引き抜き用有効ねじ長さ(mm)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.42                                                                                                                                    | 83.42                                                                                                                                                                                                           | 121.61                                                                                                                                | 66.50                                                                                                                                                        | 66.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                                                            | 96.50                                                                                                                                                     | 96.50                                                                                                                                   | 96.50                                                                                                                                   |                         |
|                 | マニュアル                        | <ul><li>側:引き抜き用有効ねじ長さ(mm)</li><li>側:引き抜き強度長さ按分(kN)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.42<br>12.31                                                                                                                           | 83.42                                                                                                                                                                                                           | 121.61<br>24.02                                                                                                                       | 66.50<br>12.67                                                                                                                                               | 66.50<br>12.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                            | 96.50<br>17.02                                                                                                                                            | 96.50<br>17.02                                                                                                                          | 96.50<br>17.02                                                                                                                          |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>側:引き抜き用有効ねじ長さ(mm)</li> <li>側:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.42<br>12.31                                                                                                                           | 83.42<br>16.99                                                                                                                                                                                                  | 121.61<br>24.02<br>22.81                                                                                                              | 66.50<br>12.67                                                                                                                                               | 66.50<br>12.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                            | 96.50<br>17.02                                                                                                                                            | 96.50<br>17.02<br>16.70                                                                                                                 | 96.50<br>17.02                                                                                                                          |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>側:引き抜き用有効ねじ長さ(mm)</li> <li>側:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.42<br>12.31<br>12.31                                                                                                                  | 83.42<br>16.99<br>11.23                                                                                                                                                                                         | 121.61<br>24.02<br>22.81                                                                                                              | 66.50<br>12.67<br>10.10                                                                                                                                      | 66.50<br>12.67<br>10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    | 11.40                                                                                                      | 96.50<br>17.02<br>16.70                                                                                                                                   | 96.50<br>17.02<br>16.70                                                                                                                 | 96.50<br>17.02<br>16.70                                                                                                                 |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>側:引き抜き用有効ねじ長さ(mm)</li> <li>側:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大部分Pmax</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.42<br>12.31<br>12.31<br><b>12.96</b>                                                                                                  | 83.42<br>16.99<br>11.23<br>11.91                                                                                                                                                                                | 121.61<br>24.02<br>22.81<br>23.18                                                                                                     | 66.50<br>12.67<br>10.10<br><b>10.99</b>                                                                                                                      | 66.50<br>12.67<br>10.10<br>10.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.43                                                                                              | 11.43                                                                                                      | 96.50<br>17.02<br>16.70<br><b>17.27</b>                                                                                                                   | 96.50<br>17.02<br>16.70<br><b>17.21</b>                                                                                                 | 96.50<br>17.02<br>16.70<br><b>17.21</b>                                                                                                 |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>側:引き抜き用有効ねじ長さ(mm)</li> <li>側:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大耐力Pmax</li> <li>二次開性</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.42<br>12.31<br>12.31<br><b>12.96</b><br>0.26                                                                                          | 83.42<br>16.99<br>11.23<br>11.91<br>0.23                                                                                                                                                                        | 121.61<br>24.02<br>22.81<br>23.18<br>0.49                                                                                             | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b>                                                                                                       | 66.50<br>12.67<br>10.10<br>10.95<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.43<br>0.24                                                                                      | 11.43<br>0.24                                                                                              | 96.50<br>17.02<br>16.70<br><b>17.27</b><br><b>0.36</b>                                                                                                    | 96.50<br>17.02<br>16.70<br><b>17.21</b><br><b>0.34</b>                                                                                  | 96.50<br>17.02<br>16.70<br><b>17.21</b><br><b>0.34</b>                                                                                  |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>側:引き抜き用有効ねじ長さ(mm)</li> <li>側:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大耐力Pmax</li> <li>二次開性</li> <li>δ max</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.42<br>12.31<br>12.31<br><b>12.96</b><br>0.26<br>37.36                                                                                 | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44                                                                                                                                                               | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64                                                                                    | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12                                                                                                            | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.43<br>0.24<br>31.63                                                                             | 11.43<br>0.24<br>31.63                                                                                     | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33                                                                                                         | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73                                                                                       | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73                                                                                       |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>一:引き抜き用有効ねじ長さ(mm)</li> <li>冊:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大耐力P<sub>max</sub></li> <li>二次開性</li> <li>⑦ max</li> <li>はが(Pa (xmm))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.42<br>12.31<br>12.31<br>12.96<br>0.26<br>37.36                                                                                        | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44                                                                                                                                                               | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64                                                                                    | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12                                                                                                            | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.43<br>0.24<br>31.63                                                                             | 11.43<br>0.24<br>31.63                                                                                     | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33                                                                                                         | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73                                                                                       | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73                                                                                       |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>・引き抜き用有効ねじ長さ(mm)</li> <li>・引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>・</li> <l< td=""><td>83.42<br/>12.31<br/>12.31<br/><b>12.96</b><br/>0.26<br/>37.36<br/>150.00</td><td>83.42<br/>16.99<br/>11.23<br/>11.91<br/>0.23<br/>37.44</td><td>121.61<br/>24.02<br/>22.81<br/>23.18<br/>0.49<br/>41.64<br/>210.00</td><td>66.50<br/>12.67<br/>10.10<br/>10.99<br/>0.21<br/>34.12<br/>75.00</td><td>66.50<br/>12.67<br/>10.10<br/>10.95<br/>0.16<br/>45.23<br/>75.00</td><td>11.43<br/>0.24<br/>31.63<br/>75.00</td><td>11.43<br/>0.24<br/>31.63<br/>75.00</td><td>96.50<br/>17.02<br/>16.70<br/>17.27<br/>0.36<br/>38.33<br/>105.00</td><td>96.50<br/>17.02<br/>16.70<br/>17.21<br/>0.34<br/>41.73<br/>105.00</td><td>96.50<br/>17.02<br/>16.70<br/>17.21<br/>0.34<br/>41.73<br/>105.00</td><td></td></l<></ul>                                                                                                                                                                                                                | 83.42<br>12.31<br>12.31<br><b>12.96</b><br>0.26<br>37.36<br>150.00                                                                       | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44                                                                                                                                                               | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00                                                                          | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12<br>75.00                                                                                                   | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.43<br>0.24<br>31.63<br>75.00                                                                    | 11.43<br>0.24<br>31.63<br>75.00                                                                            | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00                                                                                               | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00                                                                             | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00                                                                             |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>一:引き抜き用有効ねじ長さ(mm)</li> <li>例:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大耐力P<sub>max</sub></li> <li>二次剛性</li> <li>δ max</li> <li>主材の厚さ(mm)</li> <li>倒村の厚さ(mm)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.42<br>12.31<br>12.31<br><b>12.96</b><br><b>0.26</b><br><b>37.36</b><br>150.00<br>150.00                                               | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00                                                                                                                                                     | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00                                                                | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12<br>75.00<br>75.00                                                                                          | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.43<br>0.24<br>31.63<br>75.00<br>75.00                                                           | 11.43<br>0.24<br>31.63<br>75.00<br>75.00                                                                   | 96.50<br>17.02<br>16.70<br><b>17.27</b><br><b>0.36</b><br><b>38.33</b><br>105.00<br>105.00                                                                | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00                                                            | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00                                                            |                         |
|                 | マニュアル<br>算定結果                | <ul> <li>・引き抜き用有効ねじ長さ(mm)</li> <li>・引き抜き強度長さ按分(kN)</li> <li>うき抜き強度(kN)</li> <li>・</li> <l< td=""><td>83.42<br/>12.31<br/>12.96<br/>0.26<br/>37.36<br/>150.00<br/>150.00<br/>43.31</td><td>83.42<br/>16.99<br/>11.23<br/>11.91<br/>0.23<br/>37.44<br/>150.00<br/>150.00<br/>45.75</td><td>121.61<br/>24.02<br/>22.81<br/>23.18<br/>0.49<br/>41.64<br/>210.00<br/>210.00<br/>42.17</td><td>66.50<br/>12.67<br/>10.10<br/>10.99<br/>0.21<br/>34.12<br/>75.00<br/>75.00<br/>43.31</td><td>66.50<br/>12.67<br/>10.10<br/>10.95<br/>0.16<br/>45.23<br/>75.00<br/>75.00<br/>45.75</td><td>11.43<br/>0.24<br/>31.63<br/>75.00<br/>75.00<br/>47.36</td><td>11.43<br/>0.24<br/>31.63<br/>75.00<br/>75.00<br/>47.36</td><td>96.50<br/>17.02<br/>16.70<br/>17.27<br/>0.36<br/>38.33<br/>105.00<br/>105.00<br/>42.17</td><td>96.50<br/>17.02<br/>16.70<br/>17.21<br/>0.34<br/>41.73<br/>105.00<br/>105.00<br/>47.50</td><td>96.50<br/>17.02<br/>16.70<br/><b>17.21</b><br/>0.34<br/>41.73<br/>105.00<br/>105.00<br/>47.50</td><td></td></l<></ul> | 83.42<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31                                                                    | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75                                                                                                                                  | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17                                                       | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12<br>75.00<br>75.00<br>43.31                                                                                 | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36                                                  | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36                                                          | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17                                                                            | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50                                                          | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00<br>47.50                                                   |                         |
|                 | マニュアル<br>算定結果<br>係教等         | <ul> <li>一:引き抜き用有効ねと長さ(mn)</li> <li>例:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大計力P<sub>nax</sub></li> <li>乙酸酸性</li> <li>δ max</li> <li>支材の厚さ(mn)</li> <li>倒材の厚さ(mn)</li> <li>何材和内の有効剛体長さtef1(mn)</li> <li>材料内の有効剛体長さtef1(mn)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.42<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31                                                           | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75<br>45.75                                                                                                                         | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17<br>42.17                                              | 66.50<br>12.67<br>10.10<br>10.99<br>0.21<br>34.12<br>75.00<br>75.00<br>43.31<br>43.31                                                                        | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75<br>45.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36                                         | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36                                                 | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17<br>42.17                                                                   | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50                                                 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50                                                 |                         |
|                 | マニュアル<br>算定結果<br>係数等         | <ul> <li>一:引き抜き用有効ねじ長さ(mm)</li> <li>冊:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>              最大耐力P<sub>max</sub>             こ次開性             びmax             ま材の厚さ(mm)             倒村の厚さ(mm)             材料内の有効剛体長さtef1(mm)             材料内の有効剛体長さtef2(mm)             //             //</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.42<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31                                                           | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75<br>45.75                                                                                                                         | 121.61<br>24.02<br>22.81<br><b>23.18</b><br><b>0.49</b><br><b>41.64</b><br>210.00<br>210.00<br>42.17<br>42.17                         | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>43.31<br>43.31                                                   | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75<br>45.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36                                         | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36                                                 | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17<br>42.17                                                                   | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50                                                 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50                                                 |                         |
| 初期剛             | マニュアル<br>算定結果<br>係数等         | <ul> <li>們:引き抜き用有効ねと長さ(mm)</li> <li>例:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>最大耐力P<sub>max</sub></li> <li>ス剛性</li> <li>δ meax</li> <li>主材の厚さ(mm)</li> <li>側材の厚さ(mm)</li> <li>材料内の有効剛体長さtef1(mm)</li> <li>材料内の有効剛体長さtef2(mm)</li> <li>α</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.42<br>12.31<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.00                                          | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75<br>45.75<br>1.00                                                                                                                 | 121.61<br>24.02<br>22.81<br><b>23.18</b><br><b>0.49</b><br><b>41.64</b><br>210.00<br>210.00<br>42.17<br>42.17<br>1.00                 | 66.50<br>12.67<br>10.10<br>0.21<br>34.12<br>75.00<br>75.00<br>43.31<br>43.31<br>1.00                                                                         | 66.50<br>12.67<br>10.10<br><b>10.95</b><br><b>0.16</b><br><b>45.23</b><br>75.00<br>75.00<br>45.75<br>45.75<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00                                 | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00                                         | 96.50<br>17.02<br>16.70<br><b>17.27</b><br><b>0.36</b><br><b>38.33</b><br>105.00<br>105.00<br>42.17<br>42.17<br>1.00                                      | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00                                  | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00                                  |                         |
| 初期剛性の算          | マニュアル<br>算定結果<br>係数等         | <ul> <li>一:引き抜き用有効ねじ長さ(mm)</li> <li>冊:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>豊大都力P<sub>max</sub></li> <li>二次剛性</li> <li>δ max</li> <li>主材の厚さ(mm)</li> <li>倒材の厚さ(mm)</li> <li>材料内の有効剛体長さtef1(mm)</li> <li>材料内の有効剛体長さtef2(mm)</li> <li>α</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.42<br>12.31<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.00<br>1.00                                  | 83.42<br>16.99<br>11.23<br><b>11.91</b><br>0.23<br><b>37.44</b><br>150.00<br>150.00<br>45.75<br>45.75<br>1.00<br>1.00                                                                                           | 121.61<br>24.02<br>22.81<br><b>23.18</b><br><b>0.49</b><br><b>41.64</b><br>210.00<br>210.00<br>42.17<br>42.17<br>1.00<br>1.00         | 66.50<br>12.67<br>10.10<br>0.21<br>34.12<br>75.00<br>75.00<br>43.31<br>43.31<br>1.00<br>1.00                                                                 | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75<br>45.75<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00                         | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00                                 | 96.50<br>17.02<br>16.70<br><b>17.27</b><br><b>0.36</b><br><b>38.33</b><br>105.00<br>105.00<br>42.17<br>42.17<br>1.00<br>1.00                              | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00                                 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00                                 |                         |
| 初期<br>町<br>定    | マニュアル<br>算定結果<br>係数等         | <ul> <li>(円:3) 信抜き用有効ねと長さ(mm)</li> <li>(円:3) 信抜き強度長さ按分(kN)</li> <li>(日) 信抜き強度(kN)</li> <li>(日) 信載(kN)</li> <li>(日) 信載(kN)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.42<br>12.31<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.00<br>1.00<br>1.00                          | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75<br>45.75<br>1.00<br>1.00<br>1.00                                                                                                 | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17<br>42.17<br>1.00<br>1.00                              | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>43.31<br>43.31<br>1.00<br>1.00                                   | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75<br>45.75<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00                         | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00                                 | 96.50<br>17.02<br>16.70<br><b>17.27</b><br><b>0.36</b><br><b>38.33</b><br>105.00<br>105.00<br>42.17<br>42.17<br>1.00<br>1.00                              | 96.50<br>17.02<br>16.70<br><b>17.21</b><br><b>0.34</b><br><b>41.73</b><br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00            | 96.50<br>17.02<br>16.70<br><b>17.21</b><br><b>0.34</b><br><b>41.73</b><br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00            |                         |
| 初期剛<br>健の<br>定  | マニュアル<br>算定結果<br>係数等         | <ul> <li>一三目を抜き用有効わじ長さ(mm)</li> <li>例:三目を抜き強度長と按分(kN)</li> <li>引き抜き強度(kN)</li> <li>夏を抜きつな(kN)</li> <li>夏を抜きつな(kN)</li> <li>夏を放きつな(kN)</li> <li>第二のののののののののののののののののののののののののののののののののののの</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.42<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.00<br>1.00<br>0.007                                  | 83.42<br>16.99<br>11.23<br>11.91<br>0.23<br>37.44<br>150.00<br>150.00<br>45.75<br>45.75<br>1.00<br>1.00<br>1.00<br>0.07                                                                                         | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00                      | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>43.31<br>43.31<br>43.31<br>1.00<br>1.00                          | 66.50<br>12.67<br>10.10<br><b>10.95</b><br><b>0.16</b><br><b>45.23</b><br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.000<br>75.000<br>75.000<br>75.000<br>75.000000 | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07         | 11.43<br>0.24<br>31.63<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07                          | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17<br>42.17<br>1.00<br>1.000<br>1.000<br>0.07                                 | 96.50<br>17.02<br>16.70<br><b>17.21</b><br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07          | 96.50<br>17.02<br>16.70<br><b>17.21</b><br><b>0.34</b><br><b>41.73</b><br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>0.07    |                         |
| 初期剛<br>性の算<br>定 | マニュアル<br>算定結果<br>係数等         | <ul> <li>・引き抜き用有効ねじ長さ(mm)</li> <li>・引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li>              最大耐力P<sub>max</sub>             - 次期性             δ max             ま材の厚さ(mm)             側材の厚さ(mm)             樹材内の有効剛体長さtef1(mm)             材料内の有効剛体長さtef2(mm)              な</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.42<br>12.31<br>12.31<br>12.96<br>0.26<br>37.36<br>150.00<br>43.31<br>43.31<br>1.00<br>1.00<br>1.00<br>0.07                            | 83.42<br>16.99<br>11.23<br><b>37.44</b><br>150.00<br>150.00<br>45.75<br>45.75<br>1.00<br>1.00<br>1.00                                                                                                           | 121.61<br>24.02<br>22.81<br><b>23.18</b><br><b>0.49</b><br><b>41.64</b><br>210.00<br>210.00<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00 | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>43.31<br>43.31<br>1.00<br>1.00<br>1.00                           | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>45.75<br>45.75<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07         | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07                 | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00<br>0.07                                   | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>1.00                 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07                          |                         |
| 初期剛<br>性の算<br>定 | マニュアル<br>算定結果<br>係数等<br>算定結果 | <ul> <li>一三目を抜き用有効ねと長さ(mm)</li> <li>例:三目を抜き強度長さ按分(KN)</li> <li>夏を抜き強度(kN)</li> <li>最大計力P<sub>max</sub></li> <li>二次開性</li> <li>⑦ max</li> <li>基材の厚さ(mm)</li> <li>側材の厚之(mm)</li> <li>個材の厚支(mm)</li> <li>個材のの厚式(mm)</li> <li>材料内の有効剛体長さtef1(mm)</li> <li>材料内の有効剛体長さtef2(mm)</li> <li>ダ</li> <li>材料の面正定数Ke0(N/mm3)</li> <li>材料の面正定数Ke0(N/mm3)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83.42<br>12.31<br>12.31<br>12.38<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.00<br>1.00<br>1.00<br>0.07<br>0.07          | 83.42           16.99           11.23           11.91           0.23           37.44           150.00           45.75           5.00           1.00           1.00           0.07           0.02                | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02      | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>75.00<br>43.31<br>43.31<br>1.00<br>1.00<br>1.00                  | 66.50<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>45.75<br>45.75<br>45.75<br>1.00<br>1.00<br>1.00<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02 | 11.43<br>0.24<br>31.63<br>75.00<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02         | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>105.00<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02                 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02         | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07<br>0.07         |                         |
| 初期剛<br>性の算<br>定 | マニュアル<br>算定結果<br>係数等<br>算定結果 | <ul> <li>●:引き抜き用有効ねじ長さ(mm)</li> <li>●:引き抜き強度長さ按分(kN)</li> <li>引き抜き強度(kN)</li> <li> <b>表大耐力P<sub>max</sub></b></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.42<br>12.31<br>12.31<br>12.36<br>0.26<br>37.36<br>150.00<br>150.00<br>43.31<br>43.31<br>1.000<br>1.00<br>1.00<br>0.07<br>0.02<br>0.05 | 83.42           16.99           11.23           11.91           0.23           37.44           150.00           45.75           1.00           1.00           1.00           0.07           0.02           0.04 | 121.61<br>24.02<br>22.81<br>23.18<br>0.49<br>41.64<br>210.00<br>210.00<br>42.17<br>42.17<br>1.000<br>1.000<br>0.07<br>0.02<br>0.06    | 66.50<br>12.67<br>10.10<br><b>10.99</b><br><b>0.21</b><br><b>34.12</b><br>75.00<br>75.00<br>43.31<br>43.31<br>1.00<br>1.000<br>1.000<br>0.07<br>0.02<br>0.05 | 66.500<br>12.67<br>10.10<br>10.95<br>0.16<br>45.23<br>75.00<br>75.00<br>45.75<br>45.75<br>1.000<br>1.000<br>1.000<br>0.07<br>0.02<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.43<br>0.24<br>31.63<br>75.00<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02<br>0.05  | 11.43<br>0.24<br>31.63<br>75.00<br>47.36<br>47.36<br>47.36<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02<br>0.05 | 96.50<br>17.02<br>16.70<br>17.27<br>0.36<br>38.33<br>105.00<br>105.00<br>42.17<br>42.17<br>42.17<br>42.17<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02<br>0.06 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02<br>0.03 | 96.50<br>17.02<br>16.70<br>17.21<br>0.34<br>41.73<br>105.00<br>105.00<br>47.50<br>47.50<br>1.00<br>1.00<br>1.00<br>0.07<br>0.02<br>0.03 |                         |

|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DF     | DF      | DF     | DE      | DF     | DF     |                         |
|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|---------|--------|--------|-------------------------|
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R5     | R5      | R5     | R5      | R5     | R5     |                         |
|            |                                            | 項日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X90-5- | X90-5-  | H90-5- | H90-5-  | H90-5- | H90-5- | 備考                      |
|            | 1                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5W     | /W      | 55     | 5W      | 7S     | /W     |                         |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 斜め交    | 斜め交     | ハーフ    | ハーフ     | ハーフ    | ハーフ    |                         |
|            |                                            | 接合形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 差打ちビ   | 差打ちビ    | ラッブビ   | ラッブビ    | ラッブビ   | ラップビ   |                         |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ス接合    | ス接合     | ス接合    | ス接合     | ス接合    | ス接合    |                         |
|            |                                            | ビスの種類                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 全ねじ    | 全ねじ     | 全ねじ    | 全ねじ     | 全ねじ    | 全ねじ    |                         |
|            |                                            | ビスの有効径de(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.49   | 6.49    | 6.49   | 6.49    | 6.49   | 6.49   | 谷径×1.1                  |
|            |                                            | ビスの外径d(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9      | 9       | 9      | 9       | 9      | 9      |                         |
|            | ビスの什                                       | ビスの本数(本)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1       | 1      | 1       | 1      | 1      |                         |
|            | 様                                          | ビスの塑性モーメントMn(N/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.5   | 46.5    | 46.5   | 46.5    | 46.5   | 46.5   | R4.IIS試験結果より            |
|            | 100                                        | ビスの<br>其<br>進                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1021   | 1021    | 1021   | 1021    | 1021   | 1021   | May 6 /da <sup>3</sup>  |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205    | 205     | 205    | 205     | 205    | 205    | wp < 0 > de             |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200    | 203     | 203    | 200     | 200    | 203    |                         |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87     | 8/      | 87     | 87      | 87     | 87     | $\pi \times de^{-1}/64$ |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180    | 260     | 140    | 140     | 200    | 200    |                         |
| 試験体        |                                            | シリンター現長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.50   | 8.50    | 8.50   | 8.50    | 8.50   | 8.50   |                         |
| の仕様        |                                            | ねじ先端長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.00  | 12.00   | 12.00  | 12.00   | 12.00  | 12.00  |                         |
|            |                                            | ヒスの埋め込み長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.1   | 129.9   | 65.0   | 65.0    | 95.0   | 95.0   |                         |
|            | ±##                                        | 有効ねじ長さle(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.1   | 117.9   | 53.0   | 53.0    | 83.0   | 83.0   | 先端長さをカット(全12mm、半10mm)   |
|            | 「ビス先端                                      | 比重(スギ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.42   | 0.42    | 0.41   | 0.40    | 0.41   | 0.41   | 試験体測定値                  |
|            | (二)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) | 繊維方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.50  | 29.50   | 34.04  | 34.04   | 34.04  | 34.04  | R4支圧試験結果より              |
|            | 647                                        | 直角方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.86  | 23.86   | 26.76  | 26.76   | 26.76  | 26.76  | R4支圧試験結果より              |
|            |                                            | 支圧強度(N/mm <sup>2</sup> )※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.12  | 27.89   | 31.13  | 29.67   | 31.96  | 28.84  | 層構成で按分                  |
|            |                                            | 有効ねじ長さle(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.9   | 130.1   | 75.0   | 75.0    | 105.0  | 105.0  |                         |
|            |                                            | 比重(スギ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.42   | 0.43    | 0.41   | 0.40    | 0.41   | 0.45   | 試験体測定値                  |
|            | 側材                                         | 繊維方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.50  | 29.50   | 34.04  | 34.04   | 34.04  | 34.04  | B4支圧試験結果より              |
|            | (ビス頭                                       | 直角方向支圧強度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.86  | 23.86   | 26.76  | 26.76   | 26.76  | 26.76  | R4支圧試験結単より              |
|            | (側)                                        | 支压涂度(N/mm <sup>2</sup> )※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.12  | 27.90   | 31.12  | 29.67   | 31.96  | 28.84  | 層構成で按分                  |
|            |                                            | <u>スエヨ没(W/mm) 次</u><br>マギのわいだを粉E ///- /の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.12  | - 27.00 |        | - 20.07 |        |        |                         |
|            | -                                          | <u>ハーマットンフォ教En(Kn/mm2)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 200  | 1 104   | 1 415  | 1 415   | 1.965  | 1.965  | 1                       |
|            | 15. 24                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.208  | 1.104   | 1.415  | 1.415   | 1.205  | 1.205  |                         |
|            | 1杀数                                        | р<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      | 1       | 1      | 1       | 1      | 1      |                         |
|            | L                                          | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.081 | 36.597  | 32.788 | 34.397  | 31.935 | 35.390 |                         |
|            | 1                                          | Ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.208  | 1.104   | 1.415  | 1.415   | 1.265  | 1.265  | ļ                       |
|            |                                            | Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      | 1       | 1      | 1       | 1      | 1      |                         |
|            | 各降伏                                        | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.461  | 0.437   | 0.513  | 0.513   | 0.475  | 0.475  |                         |
| LYI式       | モードの値                                      | Ша                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.379  | 0.352   | 0.411  | 0.414   | 0.365  | 0.368  |                         |
| 山川和        |                                            | Шb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.441  | 0.384   | 0.528  | 0.531   | 0.447  | 0.450  |                         |
| 木          |                                            | IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.308  | 0.192   | 0.405  | 0.415   | 0.255  | 0.269  |                         |
|            |                                            | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.308  | 0.192   | 0.405  | 0.414   | 0.255  | 0.269  |                         |
|            | 降伏モート                                      | mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IV     | IV      | IV     | Ша      | IV     | IV     |                         |
|            |                                            | 勝伏耐力ny(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.97   | 4 10    | 4.33   | 4 23    | 4.39   | 4 17   |                         |
|            | 管守結里                                       | 主材の型性Eンンor回転中心の接                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.42  | 22.67   | 21.46  | 27.49   | 21.17  | 22.20  |                         |
|            | 并定相不                                       | <b>俞府の室役をデジで</b> 回転中心の接                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.42  | 25.07   | 20.26  | 21.00   | 26.70  | 22.23  |                         |
|            |                                            | <u> 合売わこの明報(mm)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.30  | 20.02   | 30.30  | 31.00   | 20.79  | 20.20  |                         |
|            |                                            | KU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07   | 0.07    | 0.07   | 0.07    | 0.07   | 0.07   |                         |
|            |                                            | k90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02   | 0.02    | 0.02   | 0.02    | 0.02   | 0.02   |                         |
|            |                                            | \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.32   | 0.32    | 0.32   | 0.32    | 0.32   | 0.32   | K0とK90を面積按分             |
|            |                                            | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.27   | 0.27    | 0.27   | 0.27    | 0.27   | 0.27   | K0とK90を面積按分             |
| 淄姓庄        |                                            | λ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.046  | 0.046   | 0.046  | 0.046   | 0.046  | 0.046  |                         |
| 洋庄体        | 係数                                         | λ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.044  | 0.044   | 0.044  | 0.044   | 0.044  | 0.044  |                         |
| 理論 出       |                                            | Ľ <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.144  | 0.144   | 0.151  | 0.151   | 0.144  | 0.144  |                         |
| 力結果        |                                            | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.165  | 0.165   | 0.165  | 0.165   | 0.165  | 0.165  |                         |
|            |                                            | J'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.007  | 0.007   | 0.007  | 0.007   | 0.007  | 0.007  |                         |
|            |                                            | J <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007  | 0.007   | 0.007  | 0.007   | 0.007  | 0.007  |                         |
|            |                                            | k'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000  | 0.000   | 0.000  | 0.000   | 0.000  | 0.000  |                         |
|            |                                            | K <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000  | 0.000   | 0.000  | 0.000   | 0.000  | 0.000  |                         |
|            |                                            | 開性係数 Ks(N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.62   | 1.62    | 1.58   | 1.58    | 1.62   | 1.62   |                         |
|            | 主材:引き                                      | R6引き抜き試験 試験体名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.5   | No.6    | No.2   | No.2    | No.3   | No.3   |                         |
|            | 抜き実験                                       | 引き抜き試験平均値(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.10  | 23.80   | 10.10  | 10.10   | 16.70  | 16.70  |                         |
|            | 値                                          | 実験時の有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.00  | 123.00  | 53.00  | 53.00   | 83.00  | 83.00  |                         |
|            | 間は、引き                                      | R6引き抜き試験 試験体名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No 7   | No 8    | No 2   | No 2    | No 4   | No 4   | R6引き抜き要素試験結果            |
|            | 10171-512                                  | 1057と10210400 (LN)<br>引き抜き試験平均値(LN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 70  | 24 30   | 10.10  | 10.10   | 17.02  | 17.02  |                         |
|            | 值                                          | 実际時の右効わじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.00  | 123.00  | 53.00  | 53.00   | 96.50  | 96.50  | 1                       |
|            | <u> </u>                                   | <ul> <li>ネージョン・ロッジョン・ロッジョン・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロッション・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・</li></ul> | 22.00  | 20.00   | 21 / 4 | 27 /0   | 21 17  | 22.00  |                         |
|            |                                            | 土·引き抜き論度 E き は ( LNI )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.42  | 1 20    | 4.00   | 7 1 4   | 1.17   | 1 10   | 長さ坊分                    |
|            | 1                                          | <u> 二·JICIACIE及</u> で仮刀(KN)<br>側、引きたき田方からにEさ/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.40   | 4.39    | 4.09   | /.14    | 4.20   | 4.48   |                         |
|            | 本設計法                                       | 四・112 坂2 用有効ねし長さ(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.30  | 25.02   | 30.36  | 31.08   | 20./9  | 28.20  |                         |
| 最大耐        | 案                                          | 側:引き抜き強度長さ技分(KN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5./6   | 4.94    | 5.79   | 5.92    | 4./2   | 4.97   |                         |
| 力等の        | 算定結果                                       | 5)さ抜さ強度(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.61   | 4.66    | 4.09   | 5.92    | 4.26   | 4.48   |                         |
| 算定         |                                            | 最大耐力P <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.08   | 6.21    | 5.96   | 7.28    | 6.12   | 6.13   |                         |
|            |                                            | 二次開性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12   | 0.13    | 0.11   | 0.11    | 0.13   | 0.12   |                         |
|            | L                                          | ô max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.93  | 18.58   | 16.86  | 31.87   | 16.10  | 19.58  |                         |
|            | 1                                          | 主:引き抜き用有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.08  | 117.89  | 53.00  | 53.00   | 83.00  | 83.00  |                         |
|            |                                            | 主:引き抜き強度長さ按分(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.23  | 22.81   | 10.10  | 10.10   | 16.70  | 16.70  | 長さ按分                    |
|            | 1                                          | 側:引き抜き用有効ねじ長さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83.42  | 121.61  | 66.50  | 66.50   | 96.50  | 96.50  |                         |
|            | マニュアル                                      | 側:引き抜き強度長さ按分(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.99  | 24.02   | 12.67  | 12.67   | 17.02  | 17.02  |                         |
|            | 算定結果                                       | 引き抜き強度(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.23  | 22.81   | 10.10  | 10.10   | 16.70  | 16.70  |                         |
|            | 1                                          | 最大耐力Pmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.91  | 23.18   | 10.99  | 10.95   | 17.27  | 17.21  |                         |
|            |                                            | 二次剛性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23   | 0.49    | 0.21   | 0.16    | 0.36   | 0.34   |                         |
|            | 1                                          | ô max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.44  | 41.64   | 34.12  | 45.23   | 38.33  | 41.73  |                         |
|            |                                            | 主材の厚さ(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150.00 | 210.00  | 75.00  | 75.00   | 105.00 | 105.00 | 1                       |
|            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150.00 | 210.00  | 75.00  | 75.00   | 105.00 | 105.00 |                         |
|            |                                            | は<br>材料内の<br>右効剛<br>体<br>見<br>オ+<br>xf1(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.75  | 42 17   | 42.21  | 45.75   | 42 17  | 47.50  |                         |
|            | 区粉竿                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.75  | 40.17   | 40.01  | 45.75   | 40.17  | 47.00  |                         |
| 4m ··· m · | 冰蚁寺                                        | 171 社内の有X1间1体長さtet2(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40./5  | 42.17   | 43.31  | 40./5   | 42.17  | 4/.50  |                         |
| 初期剛        | 1                                          | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00   | 1.00    | 1.00   | 1.00    | 1.00   | 1.00   |                         |
| 性の算        |                                            | <u>γ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00   | 1.00    | 1.00   | 1.00    | 1.00   | 1.00   |                         |
| Æ          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00   | 1.00    | 1.00   | 1.00    | 1.00   | 1.00   |                         |
|            | 1                                          | M科の面上定数KeO(N/mm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07   | 0.07    | 0.07   | 0.07    | 0.07   | 0.07   |                         |
|            | 算定結果                                       | 材料の面上定数Ke90(N/mm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02   | 0.02    | 0.02   | 0.02    | 0.02   | 0.02   |                         |
|            | FATUR                                      | CLTの面材定数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04   | 0.06    | 0.05   | 0.04    | 0.06   | 0.03   | 層構成で按分                  |
|            | 1                                          | 初期副性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34   | 1.71    | 1.58   | 1.34    | 1.71   | 1.20   | 1                       |

| 表 8.4.3-3 | 令和( | 3年度試験 | 計算シー | ۲ |
|-----------|-----|-------|------|---|
|-----------|-----|-------|------|---|

|      |                  |                                                          |                  |                | 1                |                |                  |                |                  |                |                         |
|------|------------------|----------------------------------------------------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|-------------------------|
| 項目   |                  | R6                                                       | R6               | R6             | R6               | R6             | R6               | R6             | R6               | # <b>z</b> .   |                         |
|      |                  | ₽33S                                                     | -33S             | ₽33S           | -33W             | ₽33M           | /-33S            | ₽33M           | -33W             | 偏考             |                         |
|      |                  |                                                          | 斜めな              | 斜めな            | 斜め交              | 対め方            | 斜め交              | 斜めな            | 斜めな              | 斜めな            |                         |
|      |                  | 接合形式                                                     | 差打ちビ             | 差打ちビ           | 差打ちビ             | 差打ちビ           | 差打ちビ             | 差打ちビ           | 差打ちビ             | 差打ちビ           |                         |
|      | ビスの仕             | (ABI) - A                                                | ス接合              | ス接合            | ス接合              | ス接合            | ス接合              | ス接合            | ス接合              | ス接合            |                         |
|      |                  | ビスの種類                                                    | 全ねじ              | 全ねじ            | 全ねじ              | 全ねじ            | 全ねじ              | 全ねじ            | 全ねじ              | 全ねじ            |                         |
|      |                  | ビスの有効径de(mm)                                             | 6.49             | 6.49           | 6.49             | 6.49           | 6.49             | 6.49           | 6.49             | 6.49           | 谷径×1.1                  |
|      |                  | ビスの外径d(mm)                                               | 9                | 9              | 9                | 9              | 9                | 9              | 9                | 9              |                         |
|      |                  | ビスの本数(本)                                                 | 1                | 1              | 1                | 1              | 1                | 1              | 1                | 1              |                         |
|      | 禄                | ヒスの塑性モーメントMp(N/m)                                        | 46.5             | 46.5           | 46.5             | 46.5           | 46.5             | 46.5           | 46.5             | 46.5           | R4JIS試験結果より<br>。        |
|      |                  | <u>ヒスの基準材料強度(N/mm<sup>*</sup>)</u><br>ビスのかいがあ <u>物</u> に | 1021             | 1021           | 1021             | 1021           | 1021             | 1021           | 1021             | 1021           | Mp×6⁄de°                |
|      |                  | ビスのギンク係数と                                                | 205              | 205            | 205              | 205            | 205              | 205            | 205              | 205            | m x d= <sup>4</sup> /64 |
|      |                  | ビスの全長さ(mm)                                               | 220              | 220            | 220              | 220            | 220              | 220            | 220              | 220            | // < de > 04            |
| 試験体  |                  | <u>シリンダー頭長さ(mm)</u>                                      | 8.50             | 8.50           | 8.50             | 8.50           | 8.50             | 8.50           | 8.50             | 8.50           |                         |
| の仕様  |                  | ねじ先端長さ(mm)                                               | 12.00            | 12.00          | 12.00            | 12.00          | 12.00            | 12.00          | 12.00            | 12.00          |                         |
|      |                  | ビスの埋め込み長さ(mm)                                            | 130.0            | 92.7           | 130.0            | 92.7           | 130.0            | 92.7           | 130.0            | 92.7           |                         |
|      | ±#               | 有効ねじ長さle(mm)                                             | 118.0            | 80.7           | 118.0            | 80.7           | 118.0            | 80.7           | 118.0            | 80.7           | 先端長さをカット(全12mm、半10mm)   |
|      | (ビス先端            | 比重(スギ)                                                   | 0.41             | 0.41           | 0.41             | 0.41           | 0.41             | 0.41           | 0.41             | 0.41           | 試験体測定値                  |
|      | 側)               | 繊維方向支圧強度                                                 | 34.04            | 29.50          | 34.04            | 29.50          | 34.04            | 29.50          | 34.04            | 29.50          | R4支圧試験結果より              |
|      |                  |                                                          | 26.76            | 23.80          | 26.76            | 23.80          | 26.76            | 23.80          | 26.76            | 23.80          | R4文は試験結果より<br>展携成で協公    |
|      |                  | 文圧強度(N/mm)※<br>ちかわじ長さlo(mm)                              | 20.70            | 127.02         | 20.70            | 127.2          | 34.04            | 127.02         | 34.04            | 127.02         | 唐博成で按力<br>              |
|      |                  | 円 (スギ)                                                   | 0.40             | 0.40           | 0.42             | 0.42           | 0.41             | 0.41           | 0.42             | 0.42           | 試験体測定値                  |
|      | 側材               | 繊維方向支圧強度                                                 | 34.04            | 29.50          | 34.04            | 29.50          | 34.04            | 29.50          | 34.04            | 29.50          | R4支圧試験結果より              |
|      | (ヒス頭             | 直角方向支圧強度                                                 | 26.76            | 23.86          | 26.76            | 23.86          | 26.76            | 23.86          | 26.76            | 23.86          | R4支圧試験結果より              |
|      | 10°97            | 支圧強度(N/mm <sup>2</sup> )※                                | 31.61            | 27.62          | 29.19            | 25.74          | 31.61            | 27.62          | 29.19            | 25.74          | 層構成で按分                  |
| L    |                  | スギのヤング係数E <sub>0</sub> (Kn/mm2)                          | 7                | 7              | 7                | 7              | 7                | 7              | 7                | 7              |                         |
|      |                  | α                                                        | 0.763            | 1.577          | 0.763            | 1.577          | 0.763            | 1.577          | 0.763            | 1.577          |                         |
|      | 係数               | β                                                        | 1.18137          | 1              | 1.09068          | 0.93193        | 0.92871          | 1              | 0.85742          | 0.93193        |                         |
|      |                  | γ<br>1.2                                                 | 38.140           | 36.953         | 38.140           | 36.953         | 29.983           | 36.953         | 29.983           | 36.953         |                         |
|      |                  | 1a<br>Th                                                 | 0.901            | 1.577          | 0.832            | 1.409          | 0.708            | 1.5//          | 0.654            | 1.409          |                         |
|      | 各隆佳              | π                                                        | 0.396            | 0.556          | 0.384            | 0.530          | 0,360            | 0.556          | 0.350            | 0.530          |                         |
| FYT  | モードの値            | ш<br>Ша                                                  | 0.362            | 0.372          | 0.357            | 0.367          | 0.344            | 0.372          | 0.339            | 0.367          |                         |
| 出力結  |                  | Шь                                                       | 0.315            | 0.551          | 0.297            | 0.521          | 0.259            | 0.551          | 0.244            | 0.521          |                         |
| 果    |                  | IV                                                       | 0.204            | 0.282          | 0.200            | 0.277          | 0.171            | 0.282          | 0.167            | 0.277          |                         |
|      | 隆伏モード            | c                                                        | 0.204            | 0.282          | 0.200            | 0.277          | 0.171            | 0.282          | 0.167            | 0.277          |                         |
|      |                  | mode                                                     | N                | IV             | N                | IV             | IV               | IV             | V                | V              |                         |
|      | 算定結果             | 降伏町刀py(kN)                                               | 4.18             | 4.08           | 4.11             | 4.01           | 4.45             | 4.08           | 4.36             | 4.01           |                         |
|      |                  | 王村の型性Cンジの回転中心の接                                          | 24.08            | 22.78          | 23.64            | 22 37          | 20.13            | 22.78          | 19.71            | 22 37          |                         |
|      |                  | <b>俞寿の室在世ジジの</b> で回転中心の接                                 | 15.55            | 35.92          | 16.53            | 37.85          | 16.54            | 35.92          | 17.54            | 37.85          |                         |
|      |                  | k0                                                       | 0.07             | 0.07           | 0.07             | 0.07           | 0.07             | 0.07           | 0.07             | 0.07           |                         |
|      | 係数               | k90                                                      | 0.02             | 0.02           | 0.02             | 0.02           | 0.02             | 0.02           | 0.02             | 0.02           |                         |
|      |                  | S1                                                       | 0.32             | 0.32           | 0.32             | 0.32           | 0.32             | 0.32           | 0.32             | 0.32           | K0とK90を面積按分             |
|      |                  | S2                                                       | 0.27             | 0.27           | 0.27             | 0.27           | 0.27             | 0.27           | 0.27             | 0.27           | K0とK90を面積按分             |
| 谱性序  |                  | λ1                                                       | 0.046            | 0.046          | 0.046            | 0.046          | 0.046            | 0.046          | 0.046            | 0.046          |                         |
| 上の梁  |                  | λ2<br>                                                   | 0.044            | 0.044          | 0.044            | 0.044          | 0.044            | 0.044          | 0.044            | 0.044          |                         |
| 理論 出 |                  | L'1                                                      | 0.144            | 0.144          | 0.144            | 0.144          | 0.144            | 0.144          | 0.144            | 0.144          |                         |
| 力結果  |                  |                                                          | 0.007            | 0.007          | 0.007            | 0.007          | 0.007            | 0.007          | 0.007            | 0.007          |                         |
|      |                  |                                                          | 0.007            | 0.007          | 0.007            | 0.007          | 0.007            | 0.007          | 0.007            | 0.007          |                         |
|      |                  | k'ı                                                      | 0.000            | 0.000          | 0.000            | 0.000          | 0.000            | 0.000          | 0.000            | 0.000          |                         |
|      |                  | K <sub>2</sub>                                           | 0.000            | 0.000          | 0.000            | 0.000          | 0.000            | 0.000          | 0.000            | 0.000          |                         |
|      |                  | 剛性係数 Ks(N/mm)                                            | 1.62             | 1.62           | 1.62             | 1.62           | 1.62             | 1.62           | 1.62             | 1.62           |                         |
|      | 主材:引き            | R6引き抜き試験 試験体名                                            | No.4             | No.14          | No.4             | No.14          | No.4             | No.14          | No.4             | No.14          |                         |
|      | 扱さ実験<br>値        | 5)さ抜き試験半均値(kN)<br>実験味の方効ねじ長さ(mm)                         | 17.00            | 14.90          | 17.00            | 14.90          | 17.00            | 14.90          | 17.00            | 14.90          |                         |
|      | /미++ · 리 · 노     | 天駅時の有効ねし長さ(1111)                                         | 96.50<br>R3 No 5 | 88.00<br>No.11 | 90.50<br>B3 No 5 | 88.00<br>No.11 | 96.50<br>R3 No 7 | 88.00<br>No.11 | 96.50<br>R3 No 7 | 88.00<br>No.11 | R6引き抜き要素試験結果            |
|      | 1月17:51さ<br>抜き実験 | 引き抜き試験平均値(kN)                                            | 24 20            | 19.30          | 24 20            | 19.30          | 28.30            | 19.30          | 28.30            | 19.30          |                         |
|      |                  | 実験時の有効ねじ長さ(mm)                                           | 148.00           | 111.50         | 148.00           | 111.50         | 148.00           | 111.50         | 148.00           | 111.50         | 1                       |
|      |                  | 主:引き抜き用有効ねじ長さ(mm)                                        | 24.08            | 22.78          | 23.64            | 22.37          | 20.13            | 22.78          | 19.71            | 22.37          |                         |
|      |                  | 主:引き抜き強度長さ按分(kN)                                         | 4.24             | 3.86           | 4.16             | 3.79           | 3.55             | 3.86           | 3.47             | 3.79           | 長さ按分                    |
|      | 本設計注             | <ul><li>側:引き抜き用有効ねじ長さ(mm)</li></ul>                      | 15.55            | 35.92          | 16.53            | 37.85          | 16.54            | 35.92          | 17.54            | 37.85          |                         |
| 最大耐  | 案                | 側:引き抜き強度長さ按分(kN)                                         | 2.54             | 6.22           | 2.70             | 6.55           | 3.16             | 6.22           | 3.35             | 6.55           |                         |
| 力等の  | 算定結果             | 51さ抜ざ強度(KN)<br>                                          | 3.39             | 5.04<br>87     | 3.43             | 5.17<br>80     | 3.35             | 05             | 3.41             | 0.17           |                         |
| 算定   |                  | 支入計力Pmax<br>一方副性                                         | 0.9              | 0/<br>04       | 0.9              | .09<br>74      | 12.              | 25             | 12.              | 00<br>95       |                         |
|      |                  | δ max                                                    | 17.              | 75             | 18.              | 72             | 16.              | 85             | 17.              | 84             |                         |
|      |                  | <u>主</u> :引き抜き用有効ねじ長さ(mm)                                | 118.00           | 80.72          | 118.00           | 80.72          | 118.00           | 80.72          | 118.00           | 80.72          |                         |
|      |                  | 主:引き抜き強度長さ按分(kN)                                         | 20.79            | 13.67          | 20.79            | 13.67          | 20.79            | 13.67          | 20.79            | 13.67          | 長さ按分                    |
|      |                  | 側:引き抜き用有効ねじ長さ(mm)                                        | 81.50            | 118.78         | 81.50            | 118.78         | 81.50            | 118.78         | 81.50            | 118.78         |                         |
|      | マニュアル            | 側:引き抜き強度長さ按分(kN)                                         | 13.33            | 20.56          | 13.33            | 20.56          | 15.58            | 20.56          | 15.58            | 20.56          |                         |
|      | 昇正結果             | 引き抜き強度(kN)                                               | 13.33            | 13.67          | 13.33            | 13.67          | 15.58            | 13.67          | 15.58            | 13.67          |                         |
|      |                  | 取入町刀Pmax<br>二次副社                                         | 28.              | 23<br>57       | 28.              | .19<br>58      | 30.              | .~*/<br>RA     | 30.              | 4Z<br>19       |                         |
|      |                  | — அன்பா<br>மீ max                                        | 37               | ,,<br>59       | 38               | 52             | 37               | /→<br>25       | 38               | 20             |                         |
| L    | 1                | 主材の厚さ(mm)                                                | 90.00            | 90.00          | 90.00            | 90.00          | 90.00            | 90.00          | 90.00            | 90.00          |                         |
|      |                  | 側材の厚さ(mm)                                                | 90.00            | 90.00          | 90.00            | 90.00          | 90.00            | 90.00          | 90.00            | 90.00          |                         |
|      |                  | 材料内の有効剛体長さtef1(mm)                                       | 43.31            | 45.75          | 43.31            | 45.75          | 43.31            | 45.75          | 43.31            | 45.75          |                         |
|      | 係数等              | 材料内の有効剛体長さtef2(mm)                                       | 43.31            | 45.75          | 43.31            | 45.75          | 43.31            | 45.75          | 43.31            | 45.75          |                         |
| 初期團  |                  | α                                                        | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           |                         |
| 性の算  |                  | r                                                        | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           |                         |
| 定 _  |                  | φ<br>対約の両圧字数½.0(N1/mm2)                                  | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           | 1.00             | 1.00           |                         |
|      |                  | 171110回圧定致KeU(N/mm3)<br>材料の面圧定数KaQ0(N/mm2)               | 0.07             | 0.07           | 0.07             | 0.07           | 0.07             | 0.07           | 0.07             | 0.07           |                         |
|      | 算定結果             | CLTの面材定数                                                 | 0.02             | 0.02           | 0.02             | 0.02           | 0.02             | 0.02           | 0.02             | 0.04           | 層構成で按分                  |
|      |                  | 初期剛性                                                     | 1.58             | 1.34           | 1.58             | 1.34           | 1.58             | 1.34           | 1.58             | 1.34           |                         |
|      | 4                | ー対象ないの知識問題                                               |                  | 10             |                  | 10             |                  | 10             |                  | 10             |                         |

# 9. まとめ

長ビスに関する課題は、まだ残っているが、令和 4~6 年度の 3 か年に亘った長ビス接合部 等の開発事業は本年度で一旦終了となる。3 年間で実施した試験を表 9-1 のとおり整理した。

△は試験のやり直しや確認のための再試験が必要だったものを示す。

また、試験は行わないが、公表資料において他の試験結果や計算結果で代替する可能性が あるものは、「試験の必要性」欄で「無」と記載した。

| 部位    | 用途                                  | 検証内容               | 接合方法                           | ビスの種類      | CLT       | 積層方向    | H25 | R4                  | R5               | R6 | 試験の<br>必要性 | 備考                            |
|-------|-------------------------------------|--------------------|--------------------------------|------------|-----------|---------|-----|---------------------|------------------|----|------------|-------------------------------|
|       |                                     |                    | 合板スプラインビス<br>接合                | 半ねじ        | 5層5プライ    | 強       | 0   |                     |                  |    |            |                               |
|       |                                     |                    |                                |            | 5層5プライ    | 強       |     | 0                   |                  |    |            |                               |
|       |                                     |                    | 斜め交差打ちビス接<br>。                 | 全ねじ        |           | 弱       |     |                     | 0                |    |            |                               |
|       |                                     |                    | 合                              |            | 5層7プライ    | 強       |     | 0                   | 0                |    |            |                               |
|       |                                     | 面内せん断性能の           |                                |            |           | 羽       |     | ^                   | 0                |    |            | ピッチ亦更                         |
|       | 床の面内せん断                             | データ収集              | ハーフラップビス接                      |            | 5層5プライ    | 浊       |     |                     | 0                |    |            | ビッナ変更<br>ピッチ亦雨                |
|       |                                     |                    |                                | 全ねじ        |           | 海       |     | $\overline{\wedge}$ | 0                |    |            | ビ / ) 友史<br>ピッチ変更             |
|       |                                     |                    | 合                              |            | 5層7プライ    | 弱       |     | $\triangle$         | 0                |    |            | ビッチ変更                         |
|       |                                     |                    |                                | 半ねじ        | 5層5プライ    | 強       |     | 0                   | -                |    |            | - / ·                         |
|       |                                     |                    | ハーフラップビス接                      | ∆ to 1*    | 5層5プライ    | 強       |     | 0                   |                  |    |            |                               |
| 床一床   |                                     |                    | 合                              | 主ねし        | 5層7プライ    | 強       |     | 0                   |                  |    |            |                               |
|       |                                     |                    |                                | 3-全ねじ      |           | 強       |     |                     | 0                |    |            |                               |
|       |                                     | 1列多数本打ちの検          | ハーフラップビス接                      | 6-全ねじ      | 5届5プライ    | 強       |     |                     | 0                |    |            |                               |
|       |                                     | 証                  | 合                              | 10-全ねじ     | 5/20 / /  | 強       |     |                     | 0                |    |            |                               |
|       |                                     |                    |                                | 15-全ねじ     |           | 強       |     |                     | 0                |    |            |                               |
|       | 耐力壁のロッキング<br>挙動による突き上げ<br>抵抗        | 面外せん断性能の<br>データ収集  | 斜め交差打ちビス接<br>合                 |            | 5層5プライ    | 強       |     |                     |                  | 0  |            |                               |
|       |                                     |                    |                                | 全わじ        |           | 弱       |     |                     |                  | 0  |            |                               |
|       |                                     |                    |                                |            | 5層7プライ    | 強       |     |                     |                  |    | 無          | 設計上必須ではない                     |
|       |                                     |                    |                                |            |           | 弱       |     |                     |                  |    | 無          | 設計上必須ではない                     |
|       |                                     |                    | 合板スブラインビス<br>接合                |            |           |         |     |                     |                  |    | 無          | ビスの引抜性能で代替                    |
|       |                                     |                    | ハーフラップビス接<br>合                 |            |           |         |     |                     |                  |    | 無          | ビスの引抜性能で代替                    |
|       | 耐力壁の水平方向の<br>面内せん断                  | 面内せん断性能の<br>データ収集  | 直角打ちビス接合<br>→斜め打ち+直角打<br>ちビス接合 | 全ねじ        |           | 壁強・床強   |     |                     | $\bigtriangleup$ | 0  |            |                               |
|       |                                     |                    |                                |            | 3層3プライ    | 壁強 - 床弱 |     |                     | $\bigtriangleup$ | 0  |            |                               |
|       |                                     |                    |                                |            | 3/m37 7 1 | 壁弱 - 床強 |     |                     | $\bigtriangleup$ | 0  |            |                               |
|       |                                     |                    |                                |            |           | 壁弱 - 床弱 |     |                     | $\bigtriangleup$ | 0  |            |                               |
|       |                                     |                    |                                |            | 5層5プライ    | 壁強 - 床強 |     |                     |                  |    | 無          | 3層3プライの性能で代替                  |
| 壁—床   |                                     |                    |                                |            |           | 壁強 - 床弱 |     |                     |                  |    | 無          | 3層3プライの性能で代替                  |
|       |                                     |                    |                                |            |           | 壁弱 - 床強 |     |                     |                  |    | 無          | 3層3プライの性能で代替                  |
|       |                                     |                    |                                |            |           | 壁弱 - 床弱 |     |                     |                  |    | 無          | 3層3プライの性能で代替                  |
|       | 耐力壁の水平方向の                           | 面外せん断性能の<br>データ収集  | 斜め打ち+直角打ち<br>ビス接合              |            | 3層3プライ    | 壁強・床強   |     | L                   | L                | 0  |            |                               |
|       | 面外せん断(風圧                            |                    |                                |            |           | 壁強 - 床弱 |     |                     |                  | 0  | 6          |                               |
|       | 力)                                  |                    |                                |            | 5層5プライ    | 壁頭・床頭   |     |                     |                  |    | 無          | 設計上必須ではない                     |
|       | アナトロックルナナナック                        | 7 + 1 / 10 14 4K m |                                | 36 1- 1-8  |           | 壁强 防    |     |                     |                  | ~  | 無          | 設計上必須ではない                     |
| 壁一直交壁 | 耐力壁の鉛直方向の<br>面内せん断                  | 面内せん断性能の<br>データ収集  | 斜め打ちビス接合                       | キねじ<br>全ねじ | 3層3プライ    | 壁強      |     |                     |                  | 0  |            | 告示仕様との向寺性を評<br>価              |
| 要素試験  | ビスの接合部性能<br>EYT式算定のための<br>支圧強度算定のため | ビスの支圧試験            |                                | 全ねじ        |           |         |     | 0                   |                  |    |            | 角度(40度・90度)、積<br>層方向・積層直角方向   |
|       | ビスの接合部性能<br>ロープ効果による最<br>大耐力算定のため   | ビスの引き抜き試験          |                                | 全ねじ        |           |         |     |                     |                  | 0  |            | 角度(45度、90度)、打ち<br>込み位置、埋め込み長さ |

表 9-1 CLT パネル工法における長ビス接合部の構造性能試験実施一覧

# 表 9-2 CLT パネル部分利用における長ビス接合部の構造性能実施一覧

|                 |                    |                   |           |       |               |      |     |    |    |    | 試験の |    |
|-----------------|--------------------|-------------------|-----------|-------|---------------|------|-----|----|----|----|-----|----|
| 部位              | 用途                 | 検証内容              | 接合方法      | ビスの種類 | CLT           | 積層方向 | H25 | R4 | R5 | R6 | 必要性 | 備考 |
| 壁面材一柱・ :<br>横架材 | 大壁耐力壁(CLT部<br>分利用) | ビス1本あたりのせ         |           |       | 3層3プライ(36mm)  |      |     | 0  |    |    |     |    |
|                 |                    | ん断性能を求めるた<br>めの試験 | と 大壁仕様    | 半ねじ   | 3層3プライ(60mm)  |      |     | 0  |    |    |     |    |
| 床面材-梁           | 面材張り床(CLT部<br>分利用) | ビス1本あたりのせ         | 根太なし床張り仕様 | 全ねじ   | 3層3プライ(90mm)  |      |     |    |    | 0  |     |    |
|                 |                    | ん断性能を求めるた         |           |       | 5層5プライ(150mm) |      |     |    |    | 0  |     |    |
|                 |                    | めの試験              |           |       | 5層7プライ(210mm) |      |     |    |    | 0  |     |    |

- 1) 公益財団法人日本住宅・木材技術センター: 2024 年版 CLT を用いた建築物の設計施工 マニュアル, 2024 年 11 月
- 2) 公益財団法人日本住宅・木材技術センター: CLT パネル工法建築物の仕様規定ルートの 創設に関する検討報告書, 2023 年 3 月
- 3) 公益財団法人日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計(2017 年 版), 2017 年 12 月
- 4) 一般社団法人日本建築学会:木質構造接合部設計マニュアル,2025年3月
- 5) 一般社団法人日本建築学会:木質構造設計規準・同解説 許容応力度・許容耐力設計 -, 2006 年 12 月 1 日