平成 28 年度林野庁委託事業

CLT建築物等普及促進委託事業(CLTの性能データ収集・分析)報告書

平成29年9月

木構造振興株式会社

平成 28 年度 林野庁委託事業

CLT建築物等普及促進委託事業(CLTの性能データ収集・分析)報告書

目 次

第1章	事業の概要	•	•	•	•	•	•	•	•	•	•	1
1.1	背景	•	•	•	•	•	•	•	•	•	•	1
1.2	事業の目的	•	•	•	•	•	•	•	•	•	•	1
1.3	実施内容	•	•	•	•	•	•	•	•	•	•	2
1.4	実施体制	•	•	•	•	•	•	•	•	•	•	3
第2章	ビスの種類等の違いによる影響を確認する	•	•	•	•	•	•	•	•	•	•	6
	ための試験											
2.1	実験の目的	•	•	•	•	•	•	•	•	•	•	6
2.2	試験体の概要	•	•	•	•	•	•	•	•	•	•	6
2.3	試験方法	•	•	•	•	•	•	•	•	•	•	12
2.4	試験結果	•	•	•	•	•	•	•	•	•	•	13
2.5	試験結果についての考察	•	•	•	•	•	•	•	•	•	•	44
2.6	計算値との比較	•	•	•	•	•	•	•	•	•	•	44
2.7	ビスの計算値との比較	•	•	•	•	•	•	•	•	•	•	47
2.8	ビスの引き抜き試験	•	•	•	•	•	•	•	•	•	•	54
第3章	集合型破壊による影響を確認するための試験	•	•	•	•	•	•	•	•	•	•	61
3.1	実験の目的	•	•	•	•	•	•	•	•	•	•	61
3.2	試験体の概要	•	•	•	•	•	•	•	•	•	•	61
3.3	試験方法	•	•	•	•	•	•	•	•	•	•	67
3.4	試験結果	•	•	•	•	•	•	•	•	•	•	69
3.5	集合型破壊の推定式	•	•	•	•	•	•	•	•	•	•	108
3.6	推定値と実験値の比較	•	•	•	•	•	•	•	•	•	•	110
第4章	引きボルト接合部試験	•	•	•	•	•	•	•	•	•	•	117
4.1	実験の目的	•	•	•	•	•	•	•	•	•	•	117
4.2	試験体の概要	•	•	•	•	•	•	•	•	•	•	117
4.3	試験方法	•	•	•	•	•	•	•	•	•	•	120
4.4	試験結果	•	•	•	•	•	•	•	•	•	•	121
4.5	各試験体の比較	•	•	•	•	•	•	•	•	•	•	141
第5章	CLT 目地部の気密性能	•	•	•	•	•	•	•		•	•	142
5.1	試験の目的	•	•	•	•	•	•	•	•	•	•	142
5.2	試験体	•	•	•	•	•	•	•	•	•	•	142
5.3	試験方法	•	•	•	•	•	•	•	•	•	•	144

5.4	試験結果	• •	•	•	•	•	•	•	•	•	146
5.5	考察		•	•	•	•	•	•	•	•	149
第6章	外壁の CLT 間目地の内部結露に対する		•	•		•	•	•	•	•	150
	影響の検討										
6.1	試験の目的	• •	•	•	•	•	•	•	•	•	150
6.2	試験体		•	•	•	•	•	•	•	•	150
6.3	試験方法		•	•	•	•	•	•	•	•	156
6.4	試験結果	• •	•	•	•	•	•	•	•	•	159
6.5	シミュレーション計算による検討	• •	•	•	•	•	•	•	•	•	179
6.5.1	計算概要	• •	•	•	•	•	•	•	•	•	179
6.5.2	解析結果	• •	•	•	•	•	•	•	•	•	183
6.6	考察	• •	•	•	•	•	•	•	•	•	191
6.6.1	CLT 目地からの漏気による結露メカニズム	• •	•	•	•	•	•	•	•	•	191
	とリスク										
6.6.2	気密処理の必要性について	• •	•	•	•	•	•	•	•	•	191
6.6.3	地域性について		•	•	•	•	•	•	•	•	192
第7章	接合方法別の環境性能への影響		•	•	•	•	•	•	•	•	193
7.1	試験の目的	• •	•	•	•	•	•	•	•	•	193
7.2	試験体	• •	•	•	•	•	•	•	•	•	194
7.3	試験方法	• •	•	•	•	•	•	•	•	•	204
7.4	試験結果	• •	•	•	•	•	•	•	•	•	207
7.5	考察		•	•	•	•	•	•	•	•	223
第8章	CLT を下地とした屋根・バルコニーの		•	•	•	•	•	•	•	•	226
	事故的雨掛かりの影響										
8.1	試験の目的	• •	•	•	•	•	•	•	•	•	226
8.2	実験方法	• •	•	•	•	•	•	•	•	•	226
8.2.1	試験実施日および試験場所	• •	•	•	•	•	•	•	•	•	226
8.2.2	実験手順	• •	•	•	•	•	•	•	•	•	226
8.2.3	試験体	• •	•	•	•	•	•	•	•	•	226
8.2.4	測定条件	• •	•	•	•	•	•	•	•	•	229
8.2.5	測定装置	• •	•	•	•	•	•	•	•	•	230
8.3	実験結果	• •	•	•	•	•	•	•	•	•	232
8.3.1	共通事項	• •	•	•	•	•	•	•	•	•	232
8.3.2	CLT 表面	• •	•	•	•	•	•	•	•	•	233
8.3.3	パラペット		•	•	•	•	•	•	•	•	235
8.3.4	防水下地合板裏面	• •	•	•	•	•	•	•	•	•	237
8.3.5	CLT 目地	• •	•	•	•	•	•	•	•	•	238

8.3.6	その他の測定点	•	•	•	•	•	•	•	•	•	• 239
8.3.7	含水量測定	•	•	•	•	•	•	•	•	•	• 241
8.4	考察	•	•	•	•	•	•	•	•	•	• 242
8.4.1	CLT 表面	•	•	•	•	•	•	•	•	•	• 242
8.4.2	パラペット	•	•	•	•	•	•	•	•	•	• 242
8.4.3	防水下地合板裏面	•	•	•	•	•	•	•	•	•	• 242
8.4.4	CLT 目地	•	•	•	•	•	•	•	•	•	• 242
8.4.5	その他の測定点	•	•	•	•	•	•	•	•	•	• 243
8.4.6	含水量測定	•	•	•	•	•	•	•	•	•	• 243
8.5	今後の課題	•	•	•	•	•	•	•	•	•	• 243
(参考資料)	CLT 単体の吸水速度試験	•	•	•	•	•	•	•	•	•	• 251
	1. 実験の目的	•	•	•	•	•	•	•	•	•	• 251
	2. 試験体	•	•	•	•	•	•	•	•	•	• 251
	3. 実験方法	•	•	•	•	•	•	•	•	•	• 251
	4. 実験結果	•	•	•	•	•	•	•	•	•	• 254
第9章	まとめ	•	•	•	•	•	•	•	•	•	• 257
9.1	保有水平耐力計算(ルート 3)による	•	•	•	•	•	•	•	•	•	• 257
	中高層建築物 CLT パネル工法の設計にも										
	利用可能な接合金物の強度性能の収集と										
	設計式の提案										
9.2	外壁の環境性能の低下させない対策案	•	•	•	•	•	•	•	•	•	• 258
9.3	事故的雨掛かりに対する対策案	•	•	•	•	•	•	•	•	•	• 261

第1章 事業の概要

1.1 背景

平成28年3月31日、「特殊な許容応力度および特殊な材料強度を求める件」(平12建 告1024)が改正され、翌4月1日には「CLTパネル工法を用いた建築物の構造部分の構 造方法に関する安全上必要な技術基準を定める等の件」(国土交通省告示第611号)が施 行された。平成25年にJASの対象になっていたCLTは、基準強度と構法規定が示され たことで、時刻歴応答解析以外の構造計算ルートで設計が可能になった。また平12建告 1024の改正と同時に「主要構造部を木造とすることができる大規模の建築物の主要構造 部の構造方法を定める件」(平12建告1358、平27国交告253)が改正され、CLTも燃え しろ設計の対象となったことで、準耐火建築物の要求のある中大規模木造建築物にCLTを 使用する際、CLTの表面をそのまま室内側の仕上げ面として使えるようになった。

一方、平成29年4月1日に、平成27年7月8日に制定された「建築物のエネルギー消費性能の向上に関する法律」(以下、建築物省エネ法)が施行され、延べ床面積300m²以上の特定建築物については、省エネ措置を十分に施すことが義務付けられ、今後、建築物の断熱性能の向上は不可欠な要求条件になる。CLTはコンクリートや鋼材と比較すると熱伝導率が低く、断熱効果が高い建築材料として期待されているが、CLTという新たな木質系面材を外壁や屋根に積極的に活用していくためには、高気密高断熱の要求を施工面も含め満足させることができる設計情報の整理が必要である。

CLT に関わる研究・開発はこれまで、基準法関連法規の改正等を睨み、実大振動実験を はじめとする構造性能を重視して進められてきたが、今後 CLT パネル工法の利用拡大を 図るためには、実物件を踏まえた、多方面にわたる設計情報の整理が求められる。

1.2 事業の目的

コンクリートや鋼材と比較すると、木材は熱慣性の低い材料であり、内装材として使う と暖かみを感じることができる。また紫外線の反射も少なく、目に優しい材料である。こ うした木材の長所を壁に CLT を使用する場合にも活かすには、次の項目に対する解決策 が求められる。

- 防耐火性能への対応
- 室内に可能な限り金物等が露出しない接合方法の提案
- ③ CLT と CLT の取り合い部の、適切な隙間対策の提案 etc.

上記①については、準耐火構造の要求があっても、燃えしろ設計により CLT 表面を露出 することができる。また内装制限がかかる建築物であっても、避難通路でなければ、平12 建告 1439 により、緩和措置を受けることができる。

上記②は、これまでの CLT パネル工法では、燃えない建材で壁を被覆するメンブレン工 法が採用されてきた。よって壁の電気配線同様、接合に使った金物等も、仕上げ材により 被覆することができた。しかし CLT の表面を現しとする場合、内蔵型の接合形式を選択す る必要があるが、これまでの少数事例ではグルーイン・ロッドやラグスクリュー・ボルト などの特殊な接合手法が使われており、公共建築物の設計に際しては、公益性の面で敬遠 されることも考えられる。 また平 28 国交告 611 第九、第十により、CLT パネル工法も許容応力度等計算により建築物の安全を確認することができるようになったが、この構造計算のルートでは制限が多く、設計の自由度が大きく失われることになる。CLT パネル工法の普及を図るには設計の自由度を高めるため、第八の保有水平耐力計算で設計できることが望まれ、そのためには基本設計の段階で選択可能な接合手法の強度性能のデータ整理と汎用性のある設計式の提案が必要になる。

そこで本事業では、過去に行われた接合部の実験データと、公示されている設計式を鑑 み、保有水平耐力計算に活用できる接合部の強度性能データの整理と、実用的な設計式の 提案を目的に、強度実験を実施する。

一方、上記③については、施工条件や施工精度を考えると、壁一屋根、壁一床、あるい は壁一壁の CLT の隙間を完全にふさぐことは、不可能である。また接合部周りは、CLT を 貫通する、欠き込む、あるいは金物が CLT を跨ぐことになるため、気密性能を落とす可能 性があると共に、室内側から屋外への空気の移動や熱橋により、耐久性能に影響する壁体 内結露や表面結露が発生する可能性が否定できない。

また耐久性能については、中大規模建築物では住宅と比較すると、工期が長くなるため、 施工中の雨掛かりの影響が懸念される。特に水勾配が小さい屋根やバルコニーについては、 シート防水を行っていく必要があるが、濡れたまま防水工事を行うと、乾燥の過程でCLT 表面から放出される蒸気の移動により、耐久性能に影響を及ぼす可能性がある。

そこで外皮に CLT を使用する場合の施工時に起こりうる現象を想定し、気密性能の確保、結露対策、および水勾配がない屋根の事故的雨掛かり対策の提案を目的に、気密性能 試験、結露試験および屋根 CLT の事故的雨掛かりを想定した屋外暴露試験を実施する。

1.3 実施内容

1.1 の背景、1.2 の事業の目的を踏まえ、本事業では次の実験を行い、設計に必要なデータの整理、およびディテール案を提示する。

(1)高耐力の接合部の開発

①引きボルト接合

引きボルト接合は安価で特許等による制限もないことから、住宅のような小規模だけで なく、中大規模木造建築物にも広く利用され、CLTパネル工法では壁等の浮き上がり対策 に採用されている。CLT設計施工マニュアルでは、木材現しとするため、板で角孔を塞ぐこ とを前提に計算方法を示しているが、実験による検証データが少なく、過剰な設計になって いる。そこで検証実験を行い、実証データに基づく設計式の検証を実施する。

②鋼板添え板ビス接合の多数本打ちによる影響

鋼板添え板ビス接合は、他の接合方法に比べて汎用性が高く、耐力壁の引張接合・せん 断接合、水平構面の引張接合・せん断接合など、ほぼ全ての接合部を鋼板添え板ビス接合 で賄うことが可能である。

(公財)日本住宅・木材技術センターが制定した X マーク表示金物は、これまでの実験で 得られた知見と設計式を基に3階建てまでの構造計算ルート1に対応できるよう作成され たものであるが、保有水平耐力設計による中高層建築物の設計に利用拡大するためには、 接合具を多数本打ちとした場合の検証が求められる。これまでの実績として平成28年度 林野庁委託事業においてビス多数本打ちによる影響についての研究は行ってきたが、終 局耐力の推定に必要な情報が不足している状況にある。

そこで X マーク表示金物の発展形の実用化に向け、実証実験を行い、基本設計・実施 設計に活用できる、実証データをベースとする設計式の構築を実施する。 ③鋼板添え板ビス接合のビス径及びビス長さによる影響

鋼板添え板ビス接合は、その手軽さから現場で広く使われている。一方でビス本数が 非常に多くなることからビス打ちに対する工期短縮の要望も多い。これから中高層 CLT を念頭におくと、益々多数本打ちにならざるを得ないことから、ビス径及びビス長さを 大きくすることによる構造及び施工性の影響を検証する。

また、建築物の吹き抜けや階段室周りは床パネルの代わりに梁で上下階の壁パネルを 接合することになるが、その際、現場ではよく CLT パネルの木口面と梁の側面を鋼板添 え板ビス接合としているが、これまで実験で検証されていなかったことから実験により 構造性能を確認する。

(2) 接合部の気密性能および結露に関する検証

外皮に CLT を使用する場合、設計者が設定する断熱性能および耐久性能を、長期に わたり維持するには、次の点に着目し、それぞれの対策を講じる必要がある。

① CLT は寸法も大きく、かつ1部材の重量もあるため、CLT-CLT 間の隙間を全く なくすことは困難である。

② 接合部周りには、CLTの貫通、欠き込み等が生じるため、室内側と屋外側に空気が 移動する空間が発生する。

③ 接合金物や設備配管が CLT を貫通、または跨ぐ場合、熱橋が発生する。

④ 事故的雨掛かりが起こると CLT 表面の含水率が一時的に高まる。この状況を放置したまま施工をすると、外皮内での結露の発生が懸念される。

そこで①~④の項目を鑑み、下記の実験を実施し、検証結果から設計時の注意項目の 列記と、適切な設計ディテールの提案を行う。

ア、CLT 間に 1mm~2mm の目地を設けた外壁の気密性能試験

イ、CLT間に1mm~2mmの目地を設けた、結露試験

ウ、基礎、壁、床、屋根の組み合わせを再現した、小型試験体による結露試験

エ、水勾配が 1/100 の防水の下地となる CLT が施工中に雨掛かりを受けたことを想定し、 CLT-防水層間の結露対策を考慮した新技術採用による検証実験

尚、使用する建築材料やディテールについては、実施可能な建築物を想定し、試験体の 製作を行うことにした。

1.4 実施体制

本事業は CLT 接合部強度性能 WG と CLT を快適に使える環境 WG の 2 種類の 作業部会を設け、検討を行った。

(1)CLT 接合部強度性能

木構造振興(㈱:事業の総括、実施計画、仕様の検討、試験計画・試験体図作成、 データ整理等 CLT 接合部強度性能 WG:学識経験者で構成される諮問機関。名簿は下記のとおり。

宇都宮大学中島昌一:ビス径及びビス長さの影響について要素試験実施及びデータ整 理等

(公財) 住木センター:引きボルト及び多数本打ちについての要素試験実施 CLT 接合部強度性能 WG 委員名簿

- 主 查 小林 研治 静岡大学学術院農学領域 生物資源科学科 住環境構造学研究室 准教授
- 委 員 荒木 康弘 国立研究開発法人 建築研究所構造研究グループ 主任研究員
 - 中島 昌一 宇都宮大学 地域デザイン科学部建築都市デザイン学科 助教
- オブザーバー 斉藤 方彦 農林水産省 林野庁林政部 木材産業課 木材製品技術室 木材技術担当専門職
- 事務局原田浩司木構造振興(株)客員研究員

 鈴木圭
 n
 主任研究員

委員会開催実績

第1回	日	時:平成 29 年 1月 27 日(金)17:30~19:30
	会	場 : (一社)木を生かす建築推進協議会 会議室
第2回	日	時:平成 29 年 5月 12日(金)13:00~15:30
	会	場:田町・芝浦セミナールーム IBTA
		(東京都港区芝浦 3-14-19 大成企業ビル 7 階((株)GRID 内))
第3回	日	時:平成 29 年 7月 26 日(水)17:00~19:00

会 場:TKP 東京駅八重洲カンファレンスセンター ミーティングルーム 4L

(2) CLT を快適に使える環境 WG

木構造振興㈱:事業の総括、実施計画、仕様の検討、試験計画・試験体図作成、 データ整理等

CLT を快適に使える環境 WG:学識経験者で構成される諮問機関。名簿は下記の とおり。

高知県立森林技術センター:結露試験実施

建材試験センター中央試験所:気密性能試験、結露(CLT 隙間)試験の実施

田島ルーフィング:屋根バルコニーの事故的雨掛かり試験、CLT 吸水速度試験の実施

CLT を快適に使える環境 WG 委員名簿

- 主 查 石川 廣三 東海大学名誉教授
- 委 員 齋藤 宏昭 足利工業大学工学部創生工学科教授
 - 宫村 雅史 国土技術政策総合研究所建築研究部構造基準研究室主任研究官

- 桑沢 保夫 国土技術政策総合研究所住宅研究部住宅情報システム研究官
- 山代 悟 有限会社ビルディングランドスケープ主宰

佐藤 孝浩 桜設計集団一級建築士事務所

オブザーバー

- 山﨑 肇 田島ルーフィング株式会社住建開発部部長
- 山根 良和 田島ルーフィング株式会社住建開発部一課課長
- 川中 彰平 有限会社ビルディングランドスケープ
- 斉藤 方彦 農林水産省 林野庁林政部 木材産業課 木材製品技術室 木材技術担当専門職
- 事務局原田浩司木構造振興(株)客員研究員

 鈴木圭
 パ

 主任研究員

委員会開催実績

第1回	日	時:平成29年 2月13日(月)13:00~15:30
	숲	場:(一社)木を生かす建築推進協議会 会議室
第2回	日	時:平成29年 3月28日(火)14:00~17:00
	会	場:(一社)木を生かす建築推進協議会 会議室
第3回	日	時:平成29年 6月30日(金)13:00~16:00
	会	場:高知県立森林技術センター
第4回	日	時:平成29年 9月19日 (火) 15:00~18:00
	会	場:田島ルーフィング株式会社東京支店会議室

第2章 ビスの種類等の違いによる影響を確認するための試験

2.1 実験の目的

平成 27 年度林野庁委託事業 CLT パネルを用いたビス接合部検討事業報告書¹⁾では CLT と鋼板添板の木ねじによる一面せん断接合部について、一列あたりの本数の影響 の実験による検証を実施してきた。現在使用できる木ねじの仕様は限定されているが、 今後様々な種類の木ねじが使用されることが見込まれる。そこで、本事業では径や長 さの異なる木ねじを用いた接合部の一面せん断実験を実施することとした。

2.2 試験体の概要

(1)試験体の種類

表 2.2-1 に試験体の種類と試験体数を、図 2.2-1 に試験体パラメータを図にしたものを示す。

試験体部材は材質をスギ・CLT Mx60-5-5・B 種構成相当(幅はぎ接着あり)とした。添え板鋼板の種類はSS400、厚さ9mm、幅 150mm とした。

試験のパラメータは、加力方向は強軸方向加力及び弱軸方向加力の2種類、ビス径(6.5mm、8mm、12mm)、長さ(65mm、90mm、110mm)、及び接合面(幅はぎ面、木口面)とした。

N	試験体		CLT					接合具	試験体サイズ		
NO	名前	数	構成	区分	方向		径	長さ	本数	長さ	幅
1	K0-d12L110-n5	6	5層5プライ	スギ Mx60	強軸	幅はぎ面	12	100	5	1200	250
2	K90-d12L110-n5	6	5層5プライ	スギ Mx60	弱軸	幅はぎ面	12	100	5	1200	350
3	K0-d8L90-n5	6	5層5プライ	スギ Mx60	強軸	幅はぎ面	8	90	5	950	250
4	K90-d8L90-n5	6	5層5プライ	スギ Mx60	弱軸	幅はぎ面	8	90	5	950	350
5	K0-d8L60-n5	6	5層5プライ	スギ Mx60	強軸	幅はぎ面	8	60	5	950	250
6	K90-d8L60-n5	6	5層5プライ	スギ Mx60	弱軸	幅はぎ面	8	60	5	950	350
7	S0-d6.5L65-n5	6	5層5プライ	スギ Mx60	強軸	幅はぎ面	6.5	L65	5	700	250
8	S0-d6.5L65-n20	6	5層5プライ	スギ Mx60	強軸	木口面	6.5	L65	20	1450	250

表 2.2-1 試験体の種類

※1:dはビスの山径である(Eurocodeによる)。

※2: No 1,2 の下孔径は φ7 mm、深さ 100 mmで開けた。それ以外の試験体はセルフタッピ ングによる。

(2) 接合金物及びビスの仕様

接合金物の仕様を図 2.2-2~図 2.2-5 に、ビスの仕様を図 2.2-6~図 2.2-8 に示す。

図 2.2-4 金物: d6.5-N5

ヘクスローブ T-40

品番	٨	В	U	Н	Р	D
PK8-L	12.40~ 12.70	15.20~ 16.20	0.95~ 1.45	4.85~ 5.15	3.30	7.85~ 8.15

UNIT:mm

60±1.5 90±1.5 120±2.0

UNIT:mm

サイズ

60

90 120

SWCH22A相当(JIS G 3507-2)

図 2.2-8 四角穴付きタッピングねじ STS・C65 姿図

2.3 試験方法

試験は財団法人日本住宅・木材技術センター発行「木造軸組工法住宅の許容応力度 設計(2008 年版)」²⁾に準じて行った(図 2.3-1、写真 2.3-1)。

試験体の設置は CLT を鋼製治具に固定し、鋼板に引張力を与える。

変位計測は、変位計を用い、壁パネルの軸芯と接合金物鋼板添え板部分との相対変 位とし、左右2カ所で計測を行った(写真 3.3-2)。変位には、金物の変形、試験による 材料の割れ、めり込みによる変位等も含んだものとした。

加力方法は、一方向繰り返し加力とし、事前に行った単調加力試験体の結果の δy から 1/2,1,2,4,6,8,12,16 倍の順で繰り返し加力を行った。加力は最大荷重に達した後、 接合部の機能が失われるまで、または計測不能になるまで加力を行った。

図 2.3-1 試験方法図

写真 2.3-1 試験の様子

写真 2.3-2 変位計取り付け方法

2.4 試験結果

(1)試験結果(試験体個別データ)

試験体1体ごとの荷重変位曲線及び破壊性状を纏めたものを表 2.4-1~表 2.4-8 に、 特性値を纏めたものを表 2.4-9~表 2.4-11 に示す。

表 2.4-1 各試験体の様子 (No.1) K0-d12L100-n5

表 2.4-2 各試験体の様子(No.2) K90-d12L100-n5

表 2.4-3 各試験体の様子 (No.3) K0-d8L90-n5

表 2.4-4 各試験体の様子(No.4)K90-d8L90-n5

表 2.4-5 各試験体の様子 (No.5) K0-d8L60-n5

表 2.4-6 各試験体の様子 (No.6) K90-d8L60-n5

表 2.4-7 各試験体の様子 (No.7) S0-d6.5L65-n5

表 2.4-8 各試験体の様子 (No.8) S0-d6.5L65-n20

表 2.4-9 試験結果一覧 (No.1~No.3)

試験体仕様					試験結果								1本あたりの性能		
試験体名	径 d	長 さ L	ビ ス 本数 n	最大 荷重 P _{max}	最大荷 重時変 位 δ _{max}	降伏 荷重 Py	降伏 変位 δ _y	終局 変位 δu	塑性 率 δu/δy	初期 剛性 K	実験後 の木ね じの様 子	最大 荷重	降伏 荷重	初期 剛性	
	mm	mm	本	kN	mm	kN	mm	mm		kN/mm		Pmax/ n	Py/n	K/n	
K0-n12L100-n5-1	12.0	100	5	103	15.98	82	6.66	53.1	8.0	14	引き抜け	20.64	16.49	2.74	
K0-n12L100-n5-2	12.0	100	5	87	12.27	63	4.06	53.2	13.1	18	引き抜け	17.34	12.66	3.66	
K0-n12L100-n5-3	12.0	100	5	107	15.23	61	3.01	50.0	16.6	25	引き抜け	21.43	12.18	4.98	
K0-n12L100-n5-4	12.0	100	5	84	5.78	55	1.75	53.9	30.9	47	引き抜け	16.76	10.92	9.49	
K0-n12L100-n5-5	12.0	100	5	99	10.83	59	1.38	48.7	35.3	76	引き抜け	19.79	11.77	15.22	
K0-n12L100-n5-6	12.0	100	5	98	10.24	67	3.09	53.8	17.4	27	引き抜け	19.61	13.42	5.40	
No.1	平均值	<u>i</u>		96	12	65	3.3	52.1	20.2	34.6	-	19.26	12.91	6.92	
No.1 t	票準偏	差		9	4	10	1.9	2.2	10.6	23.4	-	1.84	1.95	4.68	
No.1 3	変動係	数		10%	32%	15%	57%	4%	52%	68%	-	0.10	0.15	0.68	
No.1 5	%下限	値		75	3	42	-1.2	46.9	-4.8	-20.7	-	14.92	8.32	-4.14	
K90-n12L100-n5-1	12.0	100	5	103	19.56	50	4.47	47.7	10.7	13	引き抜け	6.09	5.20	0.72	
K90-n12L100-n5-2	12.0	100	5	108	40.24	59	4.40	53.5	12.2	16	引き抜け	5.77	3.02	0.94	
K90-n12L100-n5-3	12.0	100	5	102	32.24	63	4.55	45.5	10.0	16	引き抜け	4.51	2.91	0.60	
K90-n12L100-n5-4	12.0	100	5	117	25.15	67	3.39	44.3	13.1	24	引き抜け	7.56	4.79	0.76	
K90-n12L100-n5-5	12.0	100	5	112	15.47	55	2.37	39.0	16.5	31	引き抜け	5.15	4.91	0.36	
K90-n12L100-n5-6	12.0	100	5	106	17.99	55	5.24	45.2	8.6	12	引き抜け	4.46	1.98	0.44	
No.2	平均值	Ī		108	25	58	4.1	45.9	11.8	18.6	-	21.58	11.60	3.72	
No.2 枝	票準偏差	差		6	10	6	1.0	4.7	2.8	7.6	-	1.12	1.21	1.51	
No.2 💈	変動係	数		5%	38%	10%	25%	10%	23%	41%	-	0.05	0.10	0.41	
No.2 5	%下限	値		95	3	44	1.7	34.7	5.3	0.7	-	18.95	8.74	0.15	
K0-n8L90-n5-1	8.0	90	5	58	15.38	58	12.58	49.9	4.0	5	引き抜け	7.6	4.5	9.1	
K0-n8L90-n5-2	8.0	90	5	65	12.36	37	2.47	43.3	17.5	18	引き抜け	8.3	4.6	3.5	
K0-n8L90-n5-3	8.0	90	5	70	17.34	38	3.26	39.5	12.1	13	引き抜け	7.1	4.4	3.0	
K0-n8L90-n5-4	8.0	90	5	59	26.12	38	6.79	51.1	7.5	6	引き抜け	8.4	5.0	10.5	
K0-n8L90-n5-5	8.0	90	5	59	24.41	34	7.06	49.7	7.0	5	引き抜け	7.7	3.5	1.8	
K0-n8L90-n5-6	8.0	90	5	81	11.57	43	1.28	35.5	27.8	48	引き抜け	6.7	3.7	9.2	
No.3 平均值				65	18	41	5.6	44.8	12.7	15.9	-	13.04	8.25	3.19	
No.3 標準偏差			9	6	9	4.2	6.4	8.8	16.8	-	1.77	1.73	3.35		
No.3 変動係数			14%	34%	21%	75%	14%	69%	105%	-	0.14	0.21	1.05		
No.3 5%下限值				44	3	21	-4.2	29.7	-8.1	-23.7	-	8.87	4.17	-4.73	

表 2.4-10 試験結果一覧 (No.4~No.6)

試験体仕様					試驗結果							1本あたりの性能		
試験体名	径 d	長 さ L	ビ ス 本数 n	最大 荷重 P _{max}	最大荷 重時変 位 δ _{max}	降伏 荷重 Py	降伏 変位 δ _y	終局 変位 δ _u	塑性 率 δu/δy	初期 剛性 K	実験後 の木ね じの様 子	最大 荷重	降伏 荷重	初期 剛性
	mm	mm	本	kN	mm	kN	mm	mm		kN/mm		Pmax/ n	Py/n	K/n
K90-n8L90-n5-1	8.0	90	5	64	30.56	33	4.95	42.0	8.5	7	引き抜け	7.5	3.6	4.3
K90-n8L90-n5-2	8.0	90	5	72	24.77	38	3.58	37.6	10.5	12	引き抜け	8.3	4.8	9.3
K90-n8L90-n5-3	8.0	90	5	62	23.05	30	1.53	36.9	24.2	27	引き抜け	8.5	3.9	5.3
K90-n8L90-n5-4	8.0	90	5	64	22.89	30	2.10	36.3	17.3	18	引き抜け	8.6	4.2	2.8
K90-n8L90-n5-5	8.0	90	5	60	22.24	31	2.28	31.9	14.0	16	引き抜け	7.0	2.6	2.1
K90-n8L90-n5-6	8.0	90	5	69	26.47	30	2.35	36.6	15.6	15	引き抜け	7.1	3.8	3.6
No.4	平均值			65	25	32	2.8	36.9	15.0	16.0	-	13.00	6.42	3.20
No.4 t	票準偏	差		4	3	3	1.2	3.2	5.5	6.7	-	0.85	0.60	1.33
No.4 3	変動係	数		7%	13%	9%	45%	9%	37%	42%	-	0.07	0.09	0.42
No.4 5	%下限	値		55	18	25	-0.1	29.3	1.9	0.3	-	10.98	5.01	0.05
K0-n8L60-n5-1	8.0	60	5	38	13.80	22	0.87	27.6	31.6	46	引き抜け	5.73	4.58	0.76
K0-n8L60-n5-2	8.0	60	5	41	11.95	23	1.71	31.0	18.1	18	引き抜け	4.82	3.52	1.02
K0-n8L60-n5-3	8.0	60	5	35	13.75	22	1.89	30.6	16.2	15	引き抜け	5.95	3.38	1.38
K0-n8L60-n5-4	8.0	60	5	42	11.97	25	0.88	26.5	30.1	52	引き抜け	4.66	3.03	2.64
K0-n8L60-n5-5	8.0	60	5	38	16.71	18	2.34	33.6	14.4	9	引き抜け	5.50	3.27	4.23
K0-n8L60-n5-6	8.0	60	5	34	18.68	19	0.78	32.7	41.8	46	引き抜け	5.45	3.73	1.50
No.5	平均值	Ī		38	14	22	1.4	30.3	25.3	30.9	-	7.62	4.30	6.18
No.5 根	票準偏差	差		3	3	3	0.7	2.8	10.8	19.0	-	0.64	0.57	3.80
No.5 💈	医動係	数		8%	19%	13%	46%	9%	43%	62%	-	0.08	0.13	0.62
No.5 5	%下限	値		31	8	15	-0.1	23.7	-0.3	-14.0	-	6.12	2.96	-2.80
K90-n8L60-n5-1	8.0	60	5	38	12.91	18	1.24	22.6	18.3	21	引き抜け	20.6	9.9	2.6
K90-n8L60-n5-2	8.0	60	5	42	16.79	24	0.92	19.4	21.1	46	引き抜け	21.7	11.8	3.1
K90-n8L60-n5-3	8.0	60	5	43	14.83	19	1.10	19.6	17.8	27	引き抜け	20.4	12.5	3.2
K90-n8L60-n5-4	8.0	60	5	43	16.47	21	1.91	24.0	12.6	14	引き抜け	23.4	13.3	4.8
K90-n8L60-n5-5	8.0	60	5	35	16.43	13	1.63	27.7	17.0	10	引き抜け	22.3	11.0	6.3
K90-n8L60-n5-6	8.0	60	5	36	12.08	19	1.47	21.8	14.9	18	引き抜け	21.2	11.0	2.4
No.6 平均值			39	15	19	1.4	22.5	16.9	22.8	-	7.84	3.82	4.56	
No.6 標準偏差			4	2	4	0.4	3.1	2.9	12.8	-	0.71	0.74	2.56	
No.6 変動係数			9%	14%	19%	26%	14%	17%	56%	-	0.09	0.19	0.56	
No.6 5%下限值				31	10	10	0.5	15.2	10.0	-7.4	-	6.16	2.08	-1.48

表 2.4-11 試験結果一覧 (No.7~No.8)

試驗	该体仕相	羡		試験結果 14										性能
試験体名	径 d	長 さ L	ビ ス 本数 n	最大 荷重 P _{max}	最大荷 重時変 位 δ _{max}	降伏 荷重 Py	降伏 変位 δy	終局 変位 δu	塑性 率 δu/δy	初期 剛性 K	実験後 の木ね じの様 子	最大 荷重	降伏 荷重	初期 剛性
	mm	mm	本	kN	mm	kN	mm	mm		kN/mm		Pmax/ n	Py/n	K/n
S0-d6.5L65-n5-1	6.5	65	5	30	17.72	26	7.61	35.1	4.6	4	破断	6.09	5.20	0.72
S0-d6.5L65-n5-2	6.5	65	5	29	12.56	15	3.55	30.0	8.4	5	破断	5.77	3.02	0.94
S0-d6.5L65-n5-3	6.5	65	5	23	17.61	15	5.18	24.4	4.7	3	破断	4.51	2.91	0.60
S0-d6.5L65-n5-4	6.5	65	5	38	15.87	24	6.59	24.6	3.7	4	破断	7.56	4.79	0.76
S0-d6.5L65-n5-5	6.5	65	5	26	18.10	25	14.04	29.9	2.1	2	破断	5.15	4.91	0.36
S0-d6.5L65-n5-6	6.5	65	5	22	24.24	10	4.82	28.4	5.9	2	破断	4.46	1.98	0.44
No.8	平均值	[28	18	19	7.0	28.7	4.9	3.2	-	5.59	3.80	0.64
No.8 枝	票準偏差	差		6	4	7	3.7	4.0	2.1	1.1	-	1.17	1.33	0.21
No.8 💈	変動係	数		21%	22%	35%	54%	14%	43%	34%	-	0.21	0.35	0.34
No.8 5	%下限	値		14	9	3	-1.9	19.4	-0.1	0.6	-	2.84	0.66	0.13
S0-d6.5L65-n20-1	6.5	65	20	123	12.45	65	3.11	23.8	7.6	23	破断	6.17	3.25	1.16
S0-d6.5L65-n20-2	6.5	65	20	130	10.03	76	2.98	24.0	8.1	28	破断	6.50	3.78	1.42
S0-d6.5L65-n20-3	6.5	65	20	124	10.06	70	1.73	27.2	15.7	50	破断	6.20	3.50	2.48
S0-d6.5L65-n20-4	6.5	65	20	150	11.15	89	5.07	24.8	4.9	19	破断	7.49	4.43	0.93
S0-d6.5L65-n20-5	6.5	65	20	127	14.15	67	4.63	22.2	4.8	16	破断	6.34	3.34	0.78
S0-d6.5L65-n20-6	6.5	65	20	131	14.03	67	3.39	26.2	7.7	22	破断	6.55	3.33	1.09
No.7	平均值	[131	12	72	3.5	24.7	8.1	26.2	-	6.54	3.60	1.31
No.7標準偏差				10	2	9	1.2	1.8	4.0	12.3	-	0.49	0.45	0.61
No.7 変動係数				7%	16%	12%	35%	7%	49%	47%	-	0.07	0.12	0.47
No.7 5	%下限	値		108	8	51	0.6	20.5	-1.3	-2.7	-	5.38	2.55	-0.14

*降伏荷重 Py は 5% offset 法により求めた値。初期剛性 K は 0.1 Pmax、0.4 Pmax を結んだ直線の傾き。

(2)試験結果の纏め

各試験体の結果について荷重変形関係の包絡線を図 2.4-1 に、破壊性状を写真 2.4-1 に示す。また、ビス1本あたりの強度性能について、特性値を纏めたものを表 2.4-12 に、荷重変位関係の平均曲線を比較したものを図 2.4-2 に、完全弾塑性置換のバイリ ニア曲線を比較したものを図 2.4-3 に示す。

40

35

No.4

No.8

図 2.4-1 荷重変位関係 包絡線

No.3

No.4

No.5

No.7

No.8

写真 2.4-1 破壊の様子の例

		Py[kN]	δy[mm]	Pu[kN]	δv[mm]	δu[mm]
No.1	K0-d12L100-n5	9.10	1.98	17.94	3.72	52.12
No.2	K90-d12L100-n5	10.85	3.60	19.87	6.50	45.87
No.3	K0-d8L90-n5	6.61	3.82	12.09	6.95	44.84
No.4	K90-d8L90-n5	6.19	2.65	11.92	4.98	36.89
No.5	K0-d8L60-n5	3.61	1.04	7.07	2.05	30.33
No.6	K90-d8L60-n5	3.50	1.10	6.84	2.12	22.51
No.7	S0-d6.5L65-n5	2.76	4.60	5.28	9.06	28.73
No.8	S0-d6.5L65-n20	3.23	3.03	6.02	5.65	24.69

表 2.4-12 ビス1本あたりの完全弾塑性置換における特性値

(a) (No.1~No.6)
 (b) (No.7~No.8)
 図 2.4-2 木ねじ1本あたりの荷重変位関係の平均曲線の比較

(a) (No.1~No.6)
 (b) (No.7~No.8)
 図 2.4-2 木ねじ1本あたりの完全弾塑性置換(バイリニア)の比較

2.5 試験結果についての考察

パラメータを比較して

- ・径が大きく長いほど、木ねじ1本あたりの最大荷重、降伏荷重、終局変位は大きい。
- ・d=12、d=8(l=90)、d=8(l=60) それぞれ、最大荷重はおよそ 20kN、13kN、7.5kN であった。
- ・長さの異なる d=8mm の木ねじ間を比較すると、l=60mm の短い方が、低い耐力を示す。
 これは l=90 のものと比ベスレッドが少ないこと、 l=60 ではモード III、 l=90 ではモード IV と変形モードが異なったことなどが理由と考えられる。
- ・弱軸方向では、強軸方向と比べ終局変位がやや小さい。これは変位が大きくなると木ね じ周辺に木材の横引張破壊が生じ、引き抜き抵抗力が小さくなるためと考えられる。

2.6 計算値との比較

(1)降伏荷重

図 2.6-1 にヨーロッパ型降伏理論による降伏モードを示す。モードは全 5 種類である。 I:木ねじに曲げ変形が生じない

III-1: 塑性ヒンジが1つ生じ1層目に回転中心

III-2: 塑性ヒンジが1つ生じ2層目に回転中心

IV-1: 塑性ヒンジが2つ生じ1層目に塑性ヒンジ

IV-2: 塑性ヒンジが2つ生じ2層目に塑性ヒンジ

図 2.6-1 の各変形モードに基づく EYT による降伏荷重式は 2.6-1 式で表される。

$$P_{\rm y} = F_{\rm e1} \times d \times L \times C \tag{2.6-1}$$

ここで接合形式係数 C は 2.6-2 式の通りである。

$$C = min \begin{cases} \frac{\frac{1}{2}(1+6)}{\sqrt{\frac{2}{3}\left(\frac{d}{L}\right)^{2}Y+\frac{1}{2}+\frac{3}{2}B} - \frac{1}{2}(1+B)} \\ 8\sqrt{\frac{5}{2}+\frac{2}{3}\left(\frac{d}{L}\right)^{2}BY-\frac{1}{2B}} + \frac{1}{2}(1-3B) \\ \sqrt{\frac{2}{3}\left(\frac{d}{L}\right)^{2}Y} \\ \frac{1}{2}(1-B)+\frac{1}{2}B\sqrt{1-\frac{1}{6}+\frac{8}{3}\left(\frac{d}{L}\right)^{2}\times BY} \end{cases}$$
(2.6-2)

ここで、 P_y =降伏荷重(N)、 F_{ei} =各層の木材の基準支圧強度(N/mm²)、(i=1、2 それぞれ 1 層目、2 層目)、 d=木ねじの有効径(mm)(谷径の1.1倍)、 L=木ねじの有効長さ(mm)(木 ねじ首下長さから先端のテーパー部長さを取り除いた長さ)、 F_s =木ねじの基準材料強度 (N/mm²)、 γ =木ねじの基準材料強度と木材の基準支圧強度の比($\gamma = F_s/F_{e1}$)、 t_i =木材の厚 さ(mm)、(i=1,2)、 $\alpha = t_1/t_2$ 、 $\beta = F_{e2}/F_{e1}$ 、 $L = t_1 + t_2$ である。 なおここでは、ラミナの厚さ がすべて等しいと仮定して、 $t_1 = t_2$ 、つまり $\alpha = 1$ とし、式を誘導した。計算に用いた値と 計算結果、実験値との比較は表 2.6-1 の通りである。

	試験体	F	$F_{\rm e1}$	$F_{ m e2}$	$d_{ m eff}$	$I_{\rm eff}$	$_{ m c}P_{ m y}$	yield	$P_{ m limit}$	$P_{ m yperf}$	$P_{ m yoff}$	$_{\rm c}P_{\rm y}/P_{\rm ylimit}$	$_{ m c}P_{ m y}/P_{ m yperf}$	$_{ m c}P_{ m y}/P_{ m yoff}$
No	試験体名	N/mm 2	N/mm 2	N/mm 2	mm	mm	kN	mode	kN	kN	kN			
1	K0-d12L100-n5	235	26.0	16.0	11.0	88.0	7.7	IV-1	4.21	9.10	10.93	1.84	0.85	0.71
2	K90-d12L100-n5	235	16.0	26.0	11.0	88.0	6.1	IV-1	4.91	10.85	10.32	1.23	0.56	0.59
3	K0-d8L90-n5	470	26.00	16.0	6.6	82.0	3.9	IV-1	2.66	6.61	7.09	1.48	0.59	0.55
4	K90-d8L90-n5	470	16.00	26.0	6.6	82.0	3.1	IV-1	3.27	6.19	5.67	0.94	0.50	0.54
5	K0-d8L60-n5	470	26.00	16.0	6.6	52.0	3.6	III-2	2.04	3.61	3.69	1.76	1.00	0.98
6	K90-d8L60-n5	470	16.00	26.0	6.6	52.0	2.7	III-1	2.07	3.50	3.60	1.30	0.77	0.75
7	S0-d6.5L65-n20	950	26.0	16.0	4.4	58.5	2.5	IV-1	1.11	3.23	3.04	2.23	0.77	0.82
8	S0-d6.5L65-n5	950	26.0	16.0	4.4	58.5	2.5	IV-1	0.58	2.76	2.41	4.25	0.90	1.03

表 2.6-1 EYT の計算に用いた値と計算結果

上記の表において

F: 235 (SS400 の公称値)、470 (素材の引張実験値)、950 (素材の引張実験値)

Fe1,2:26 (ラミナの繊維に平行する方向の支圧実験値)、16 (ラミナの繊維に平行する

方向の支圧実験値)

d_{eff}:谷径 x 1.1

Leff:首下長さ-先端部長さ

Plimit: 0.05Pmax までの初期剛性を用いたビス1本あたりの比例限度荷重

Pyperf:完全弾塑性置換によるビス1本あたりの降伏荷重

Pyoffset: 2%オフセット法によるビス1本あたりの降伏荷重

図 2.6-2 に計算値と荷重変位関係の平均曲線の比較を示す。

計算値は概ね実験値の曲線の傾きが変わり始める点を示しており、完全弾塑性置換やオ フセット法により定義される降伏荷重の実験値よりも低い値を示している。これは、実験 値には木ねじの引き抜き抵抗分が加味されているためと考えられる。

図 2.6-2 降伏荷重の計算値(実線:強軸方向、点線:弱軸方向)

参考文献

*1)木構造振興㈱:平成27年度林野庁委託事業 CLT等新たな製品・技術の開発・普及事業(CLT等接合 部データ事業) CLTパネルを用いたビス接合部検討事業報告書,平成28年3月

*2) (財)日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計(2008年版),平成21年6月

2.7 ビスの計算値との比較

本報告では、接合部に用いたビスの一方向および繰り返し曲げ試験を行うことによ り、接合具の繰り返し曲げ変形性能に関するデータの蓄積を図ることとした。

(1)試験体

試験に使用したビス一覧を表 2.7-に、ビスの写真を写真 2.7-1 に示す。

			•••					
夕称	티모			寸法(mm)				頭(mm)
101	記り	胴部径	山径	谷径	ち勇	ネジ長さ	長さ	径
パネリード鋼	PK	8	8	6.1	119.1	100.1	6	15.5
ラグスクリュー	LS	11.8	12.3	8.8	109.4	67	8	18.5(二面幅)

PK8-120

LS12 写真 2.7-1 ビス写真一覧

(2)試験方法

本実験で行う4点曲げ試験の概要図を図に、試験写真を写真2.7-2に示す。本試験 では繰り返し曲げ試験を行うため、ロッドとロードセルの間をピン接合とし、上下の 移動を拘束した。その一方、水平移動を自由とするためにロードセル下部にリニアガ イドを設けた。また、アーム回転軸を接合具の曲げ変形部の中心に一致させることに より、加力時の移動がなるべく生じないようにした。また、無負荷時にロッドの重心 を調節し、ロッド自重による曲げモーメントが生じないようにした。

試験は万能試験機(島津製作所製 AG-1 オートグラフ)を用いて行い、クロスヘッドの移動をアームの回転運動に変換した。繰り返し加力試験では、回転側治具の下部に設置した加速度計 ARF-10A(東京測器研究所)により、治具の傾きに応じて作用する重力加速度を測定し、次式より算出した値を変形角とした。

$$\theta = \sin^{-1} \left(\frac{a}{g} \right) \tag{1}$$

ここで、 θ: 変形角(deg.)、a: 測定した加速度(m/s²)、g: 重力加速度(m/s²)

一方向加力試験では、アーム回転軸に合わせてプーリーを設置し、プーリーに巻き 付けたワイヤーを介して回転角を直接測定した。ワイヤーの変位は変位計 SDP-50CT (東京測器研究所)を用いて測定した。 本試験で用いた2つの測定法については、繰り返し加力試験の振幅の範囲内で同一 の値が得られている。

得られた荷重から次式により曲げモーメントを算出し、モーメントと変形角の関係 を得た。

 $M = P_{LC} \times (l_6 + l_2)$

(2)

ここで、*M*:モーメント、*P*_L*c*:ロードセル荷重、*l*₆:ロードセルからつかみ部先端までの 距離、*l*₂:つかみスパン

なお、 l_6 の値は 200mm、 l_2 の値は接合具径 $d \circ 2 \Leftrightarrow (2d)$ とした。

図 2.7-1 4 点曲げ試験の概要図

写真 2.7-2 4 点曲げ試験の様子

(3) 加力スケジュール

加力スケジュールは一方向加力および一定振幅による繰り返し加力とした。繰り返 し加力の振幅は片側 15 度(両側 30 度)、片側 22.5 度(両側 45 度)および片側 30 度 (両側 60 度)の3条件を設定し、毎秒約1度の速度で加力を行った。

(4)結果と考察

一方向加力、繰り返し加力試験における代表的なモーメント-変形角曲線と、繰り返し数とピークモーメントの関係を図 2.7-2 から図 2.7-5 に示す。また、全試験の結果一覧を表 2.7-~表 2.8-2~表 2.8-に示す。

塑性振幅と繰り返し回数の関係を図 2.7-6 に示す。

図 2.7-2 モーメント-変形角曲線(mono)

図 2.7-4 繰り返し数-ピークモーメント

図 2.7-5 モーメント-変形角曲線(mono)

図 2.7-6 塑性振幅と繰り返し回数の関係

===	ㅋ므	最大M	最大M時変形角	終局変形角	終局塑性変形角
記巧	記方	Nm	deg.	deg.	deg.
	8.0-120-mono-1	41.07	33.7	58.8	53.6
	8.0-120-mono-2	43.70	30.0	48.9	43.3
	8.0-120-mono-3	43.52	29.3	45.3	42.2
	8.0-120-mono-4	41.05	37.5	65.2	59.8
	8.0-120-mono-5	44.65	30.5	52.7	49.6
PK	8.0-120-mono-6	43.31	33.0	59.6	53.8
	8.0-120-mono-7	44.37	29.8	52.9	47.7
	8.0-120-mono-8	44.73	34.3	53.9	50.3
	8.0-120-mono-9	40.16	27.3	41.8	36.0
	8.0-120-mono-10	44.11	32.4	55.8	52.4
	平均	43.07	31.78	53.50	48.87
	標準偏差	1.59	2.83	6.59	6.50
	12-mono-1	85.80	24.5	52.7	46.0
	12-mono-2	84.14	19.3	51.6	47.7
LS	12-mono-3	87.55	20.6	53.1	48.4
	平均	85.83	21.46	52.48	47.37
	標準偏差	1.39	2.23	0.62	0.98

表 2.7-2 一方向曲げ試験結果一覧

表 2.7-3 繰り返し曲げ試験結果一覧(片側 15 度(両側 30 度))

====	勾折	山径	変形角	ᄳᆂᆂᅌ	最大M	塑性振幅		n
記方	石朳	mm	deg.	הוכירויוו	Nm	deg.	0.8Pmax	0.1Pmax
	8 0-120-15-1			Ш.	40.64	7.36	10	18
	0.0-120-13-1			負	-39.47	7.94	10	19
	9 0 120 1E 2			正	38.66	7.85	10	22
	0.0-120-13-2			負	-37.73	8.03	12	22
	8 0-120-15-3			正	41.07	7.70	10	18
	0.0-120-13-5			負	-39.99	8.11	11	18
	8 0-120-15-4			正	38.48	7.86	11	18
	0.0-120-13-4			負	-37.75	8.47	10	18
	8 0-120-15-5			正	41.66	6.88	10	17
	0.0 120 15 5	8	15	負	-41.18	7.92	10	17
	8 0-120-15-6	0	15	正	38.83	7.59	10	18
PK	0.0 120 15 0			負	-37.46	7.93	10	17
	8 0-120-15-7			正	39.20	7.39	10	16
	0.0 120 15 /			負	-38.93	8.14	10	16
	8 0-120-15-8			ΤĒ	39.61	7.51	11	21
	0.0 120 15 0			負	-38.53	8.09	11	21
	8 0-120-15-9			ΤĒ	42.25	7.25	11	19
	0.0 120 15 5			負	-40.80	7.67	10	20
	8 0-120-15-10	`		ΤĒ	38.45	7.50	10	22
	0.0 120 15 10	,		負	-38.12	8.14	11	21
	亚均			ΤĒ	39.89	7.49	10.3	18.9
				負	-39.00	8.04	10.5	18.9
	煙淮 偏差			ΤĒ	1.34	0.28	0.46	1.97
	「ホーモ」「開ノエ			負	1.26	0.19	0.67	1.92

 코무	夕称	山径	変形角	加力方向	最大M	塑性振幅	1	า
記与	口小	mm	deg.	ניין רערעונו	Nm	deg.	0.8Pmax	0.1Pmax
	8 0-120-22 5-1			正	43.67	14.25	4	5
	0.0-120-22.3-1			負	-42.33	14.62	4	5
				正	39.76	14.75	4	5
	0.0-120-22.5-2			負	-38.48	15.34	4	5
	8 0-120-22 E-3			正	43.71	14.00	5	6
	0.0-120-22.3-3			負	-42.28	14.38	4	5
	8 0-120-22 5-4			正	39.41	14.50	4	6
	0.0-120-22.3-4			負	-38.63	15.21	4	5
	8 0-120-22 5-5			正	40.37	14.41	4	6
	0.0-120-22.3-5	8	22.5	負	-39.33	14.86	4	5
	8 0-120-22 F-6	0	22.5	正	43.73	14.16	4	5
DK	0.0-120-22.3-0			負	-42.17	14.32	4	4
FIX	8 0-120-22 5-7			正	42.90	14.70	4	5
	0.0-120-22.3-7			負	-40.91	15.02	4	5
	9 0-120-22 E-9			正	39.80	14.75	4	6
	0.0-120-22.3-0			負	-38.71	15.10	5	6
	8 0-120-22 5-0			正	39.95	14.67	5	7
	0.0-120-22.3-9			負	-38.45	15.02	5	6
				正	41.53	14.27	4	5
	8.0-120-22.5-10			負	-40.17	14.95	4	5
	亚均			正	41.48	14.45	4.2	5.6
	〒43			負	-40.15	14.88	4.2	5.1
	標准偏差			正	1.74	0.26	0.40	0.66
	标华洲左			負	1.57	0.32	0.40	0.54

表 2.7-4 繰り返し曲げ試験結果一覧(片側 22.5 度(両側 45 度))

表 2.7-5 繰り返し曲げ試験結果一覧(片側 30度(両側 60度))

=7 @	夕 年	山径	変形角	ho 누 수 수	最大M	塑性振幅	1	า
記方	名朳	mm	deg.	┉낐┚	Nm	deg.	0.8Pmax	0.1Pmax
	8 0-120-30-1			正	42.1065	22.17412	2	3
	0.0-120-50-1			負	-39.9263	22.29641	2	2
	0 0 1 20 20 2			正	40.85776	22.14848	2	3
	0.0-120-30-2			負	-39.2985	22.70747	2	2
	8 0-120-30-3			正	44.97526	21.73512	2	2
	0.0-120-50-5			負	-42.4103	22.12286	1	2
	8 0-120-30-4			正	41.1615	22.03026	2	3
	0.0-120-50-4			負	-39.528	22.40696	1	2
	8 0-120-30-5			正	42.0255	22.22144	2	2
	0.0-120-30-3	8	30	負	-39.798	22.40696	1	2
	8 0-120-30-6	0	50	正	41.27626	21.88065	2	3
PK	0.0-120-30-0			負	-39.2243	22.40103	1	2
	8 0-120-30-7			正	44.51626	21.46806	2	2
	0.0-120-50-7			負	-41.8365	21.85704	1	2
	8 0-120-30-8			正	41.742	21.87672	2	3
	0.0-120-50-0			負	-39.9735	22.62041	2	2
	8 0-120-30-0			正	42.0255	21.94559	2	3
	0.0-120-50-5			負	-39.8318	22.26484	2	2
	8 0-120-30-10			正	40.8105	22.15834	2	3
	0.0-120-50-10			負	-38.4953	22.3122	2	3
	亚均			正	42.1497	21.96388	2	2.7
				負	-40.0322	22.33962	1.5	2.1
	樗淮偏美			正	1.377873	0.223577	0	0.46
	际华洲左			負	1.132601	0.226952	0.5	0.3

2.8 ビスの引き抜き試験

(1)試験体

試験に使用したビス一覧を表 2.7-に、ビスの写真を写真 2.8-1 に示す。

<u>名称</u>	記号	胴部径	山径	谷径	長さ	ねじ長さ	頭長さ	頭径			
パネリード纲	PK8-60	8	8	6.1	60.3	40.7	6	15.5			
	PK8-90	8	8	6.1	90.3	71.5	6	15.5			
ラグスクリュー	LS12	11.8	12.3	8.8	109.4	67	8	18.5(二面幅)			
四角穴付きタッ	STS-65	5.5	6.4	4.4	65.6	54	3.2	10.2			
ピンねじ	STS-90	5.5	6.5	4.4	90.1	64	6.1	9.9(二面幅)			

表 2.8-1 使用したビスの寸法

PK8-60

STS90

写真 2.8-1 ビス写真一覧

(2)試験方法

試験概要を図 2.8-1 および写真 2.8-2 に示す。集成材の上面からビスを打ち込み、治 具を頭部に引っ掛けて引き抜き力を与えた。治具の寸法の都合上、ビス頭部と集成材 表面の間が 13mm となるように打ち込んだ。ラグスクリューの先穴は径 7mm×深さ 100mm とした。

図 2.8-1 引き抜き試験の概要図

写真 2.8-2 引き抜き試験の様子

(3)加力スケジュール

加力は単調加力とし、毎分 1mm の速度で引き抜いた。最大荷重の 5 割程度まで荷 重が低下した時点で試験を終了した。

(4)結果と考察

引き抜き試験における代表的な荷重-変形角曲線を図 2.7-2 から図 2.8-6 に示す。また、全試験の結果一覧を表 2.7-から表 2.8-6 に示す。

図 2.8-2 荷重-変形角曲線(PK8-60)

図 2.8-3 荷重-変形角曲線 (PK8-90)

図 2.8-4 荷重-変形角曲線(LS12)

図 2.8-5 荷重-変形角曲線(STS65)

表 2.8-2	~表 2.8-6	ビスの引	き抜き試	験結果一覧
ㅋ므	夕珎	山径	長さ	最大荷重
記方	石小	mm	mm	kN
	8-60-1			5.209375
	8-60-2			6.217813
	8-60-3			4.200781
	8-60-4			5.320938
	8-60-5	8.0	60.3	4.735781
РК	8-60-6	0.0		5.585938
	8-60-7			4.058125
	8-60-8			5.429375
	8-60-9			5.321562
	8-60-10			5.797812
	半均			5.18//5
. <u></u>	標準偏差			0.67829
한문	夕称	山径	長さ	最大荷重
	ገባጥ	mm	mm	kN
	8-90-1			10.06328
	8-90-2			15.09844
	8-90-3			10.32891
	8-90-4			11.37187
	8-90-5	0 0	00.2	9.679688
עס	8-90-6	0.0	90.5	8.824375
PK	8-90-7			11.16797
	8-90-8			9.664844
	8-90-9			9.566406
	8-90-10			10.2125
	平均			10.59783
	標準偏差			1.751465

图 2.8-6	何里-发形角	田禄(SIS90)
表 2.8-2~表 2.8-	・6 ビスの引	き抜き試験結果一覧

한문	夕称	山径	長さ	最大荷重
	口你	mm	mm	kN
	1			21.51172
	2			15.87734
	3			14.12266
	4			14.3875
	5	8.0	109.4	13.84375
IS	6	0.0	105.4	14.975
LJ	7			13.29219
	8			14.56406
	9			13.33594
	10			14.25703
-	平均			15.01672
	標準偏差			2.40554
		山汉	E +	早十芬香
記号	名称	山1至 mm	txC mm	取八何里
	1	111111	111111	
	1			5.90900/ E 412E
	2			5.4125 7 161562
	3 ⊿			7.101502
	4 F			5.995937
	5	8.0	65.6	6.920625
STS60	0			5./03125
	/			0.543125
	8			7.662188
	9			5.57
•	10			5.05025
	半均			0.2075
	际华俪左			0.830/28
		山径	長さ	
記号	名称	ші£ mm	mm	
	1			9 26719
	2			10 3780
	2			Q 17281
	4			7 70313
	т 5			7 05062
	5	6.4	90	8 78844
STS90	7			8 71027
	, R			7 07521
	0			7 6775
	9 10			7 76011
-				Q EA2671
	〒47 檀淮偏差			0.343071

第3章 集合型破壊による影響を確認するための試験

3.1 実験の目的

平成27年度林野庁委託事業CLTパネルを用いたビス接合部検討事業報告書¹⁾では CLTと鋼板添板の木ねじによる一面せん断接合部について、集合型破壊の影響の実験 による検証を実施してきた。これまでの試験は5層5プライで試験を実施してきたが、 建物が中高層化していくと5層5プライや7層7プライの他に5層7プライという選 択肢もあり得る。5層7プライは、床パネルにおいては曲げが厳しい箇所、壁パネル については長期荷重による座屈、パネル端部の圧縮に有利な材料である。したがって 本事業では5層7プライによる集合型破壊について検証を行うこととした。

また、文献 1)の実験において、弱軸方向加力の試験が全て集合型破壊する結果となったため、本事業では集合型破壊しないための条件を理論的に求め、その条件で集合型破壊しないことを確認することとした。

3.2 試験体の概要

(1)試験体の種類

試験の種類は CLT の繊維方向に対する加力の向きによって表 3.2-1 及び表 3.2-2 のとおり実施しており、使用する CLT パネルは 5 層 5 プライに加えて、これまで実験実績の無い 5 層 7 プライを使用している。

文献 1)より CLT において集合型破壊は積層接着面のせん断破壊で最終破断となる。 したがって、図 3.2-1 及び図 3.2-2 の網掛け部の面積をパラメータとした。同様に幅 はぎの有無とその位置も大きく影響を及ぼす可能性が高い。したがってこれらをパ ラメータとした試験を実施した。

通し番号	試験体	ビスの使用		ビスで囲まれた部分の寸法			CLTパネルの仕様				試験体
		ビスの種類	ビス本 数 (本)	CLT端部か ら最外端の ビスまでの 距離L _b (mm)	左端から右 端までのビ スの距離 W _b (mm)	金物の種類 (図1参照)	CLTの種類	ラミナの 幅W _L (mm)	ラミナ の厚さ t(mm)	ラミナ境界部とビスで 囲まれた面積の外周 の位置関係	数 (括弧内 は単調 加力試 験)
1	P29M57-65	$STS \cdot C65$		1 290	100	P29M	Mx60-5-7A種構 成、幅はぎなし	124	30	近接	6
2	P29M57-90		STS·HC90 31								1
3	P29M55-90	STS·HC90					Mx60-5-7A 種構 成、幅はぎなし				3
4	P29MC55-90									近接していない	3
合 計										13	

表 3.2-1 強軸試験体の種類

※Eurocodeによるとビスの縁・端距離及び間隔におけるdとは、ビスの山径を指す。

通し番号	ビスの仕様		ビスで囲まれた部分の寸法			CLTパネルの仕様				試験体	
	試験体名	ビスの種類	ビス本 数 (本)	CLT端部か ら最外端の ビスまでの 距離L _b (nm)	CLTの幅 W (mm)	金物の種類	CLTの種類	ラミナの 幅WL (mm)	ラミナ の厚さ t(mm)	CLT端部からビス接 合された ラ ミナ境界部 までの距離 L(mm)	数 (括弧内 は単調 加力試 験)
4	O3523G	STS·C65	18	230	350	O23	Mx60-5-5A種構 成 幅けぎか	124	30	ランダム	6
5	O3041		20	410	350	0.41 (CTTE)					6
6	O3541		20	410	350	041(811)					6
승 計										18	

表 3.2-2 弱軸試験体の種類

※Eurocodeによるとビスの縁・端距離及び間隔におけるdとは、ビスの山径を指す。

図 3.2-1 強軸試験体のパラメータ

図 3.2-2 弱軸試験体のパラメータ

(2) 接合金物及びビスの仕様

接合金物の仕様を図 3.2-3~図 3.2-5 に、ビスの仕様を図 3.2-6~図 3.2-7 に示す。

図 3.2-3 金物 P29M (試験体 P29M57-65、P29M57-90、P29M55-90、P29MC55-90用)

図 3.2-5 金物 O41 (試験体 O3041、O3541 用)

図 3.2-6 四角穴付きタッピングねじ STS・C65 姿図

図 3.2-7 四角穴付きタッピングねじ STS・HC90 姿図

(3)試験体の仕様

試験体の仕様を図 3.2-8~図 3.2-14 に示す。

350

試験体 P29M57-90 図 3.2-9

150 #### <上面> 350前後 124 113前行 **CLT**パネル 5層5プライ

図 3.2-10 試験体 P29M55-90

図 3.2-11 試験体 P29MC55-90

3.3 試験方法

試験は財団法人日本住宅・木材技術センター発行「木造軸組工法住宅の許容応力度 設計(2008 年版)」²⁾に準じて行った。試験方法は接合部の形式に応じて P29M57-65、 P29M57-90、P29M55-90 及び P29MC55-90 は図 3.3-1、O3523G、O3041 及び O3541 は図 3.3-2、OG35 は前章図 2.3-1 のとおり実施した。

変位計測は、変位計を用い、壁パネルと接合金物鋼板添え板部分との相対変位とし、 左右2カ所で計測を行った。変位には、金物の変形、試験による材料の割れによる変 位等も含んだものとした。

加力方法は、一方向繰り返し加力とし、事前に行った単調加力試験体の結果の δy から 1/2,1,2,4,6,8,12,16 倍の順で繰り返し加力を行った。加力は最大荷重に達した後、 接合部の機能が失われるまで、または計測不能になるまで加力を行った。

図 3.3-1 P29M57-65、P29M57-90、P29M55-90、P29MC55-90の試験方法、 変位計の取り付け

図 3.3-2 O3523G、O3041、O3541の試験方法、変位計の取り付け
3.4 試験結果

(1)試験体 P29M57-65

試験体 P29M57-65 の特性値を表 3.4-1 に、各試験体の荷重-変位曲線を図 3.4-1~ 図 3.4-6 に、包絡線の比較を図 3.4-7 に示す。破壊性状を写真 3.4-1~写真 3.4-18 に示 す。破壊性状は、1、2、5 体目と 3 体目が集合型破壊となり、それ以外はビスによる 木材の支圧破壊とビスの折損となった。

試験体記号	P29M57							亚扬达 植建物学	THE SEL ET WA	5%	
項目	1	2	3	4	5	6	平均恒	惊 申 澜 定	发到1尔毅	係数	下限值
1/10Pm (kN)	20.8	17.2	20.3	22.6	19.2	20.3	20.1	1.79			
1/10 δ m (mm)	0.12	0.11	0.08	0.11	0.11	0.12	0.11	0.01			
2/5Pm (kN)	83.0	68.7	81.0	90.2	76.9	81.1	80.2	7.11			
2/5δm (mm)	2.94	1.38	1.80	1.55	1.23	1.54	1.74	0,62			
2/3Pm (kN)	138.4	114.5	135.1	150.4	128.2	135.2	133.6	11.87	0.089	0.792	105.8
2/3 δ m (mm)	6.10	2.97	3.95	3.77	2.76	3.70	3.88	1.19			
9/10Pm (kN)	186.8	154.6	182.4	203.0	173.1	182.5	180.4	15.99	1		
9/10 δ m (mm)	10.55	6.13	7.23	9.22	5.26	7.74	7.69	1.95			
Pm (kN)	207.6	171.8	202.6	225.6	192.3	202.7	200.4	17.78			
δ m (mm)	14.95	8.71	11.11	18.01	8.85	13.16	12.47	3.64			
δu時荷重(kN)	207.4	170.8	162.1	180.5	192.3	162.2	179.2	18.00	1		
δ u (mm)	16.00	8.86	20.11	24.77	8.85	18.09	16.11	6.33			
降伏耐力 Py (kN)	117.4	109.2	111.0	131.9	110.3	112.7	115.4	8.57	0.074	0.827	95.4
δy (mm)	4.74	2.76	2.87	2.89	2.22	2.64	3.02	0.88			
終局耐力 Pu (kN)	193.0	162.0	188.2	209.5	180.6	185.3	186.4	15.56	0.083	0.806	150,2
初期剛性 K (kN/mm)	24.77	39.57	38.68	45.64	49.68	42.69	40.17	8.56			
降伏点変位 δv(mm)	7.79	4.09	4.87	4.59	3.64	4.34	4.89	1.48	1		
塑性率 μ=δu/δv	2.05	2.17	4.13	5.40	2.43	4.17	3.39	1.37			
構造特性係数 Ds	0.57	0.55	0.37	0.32	0.51	0.37	0.45	0.11			

表 3.4-1 試験体 P29M57-65 の特性値

1/10Pm;0.1Pmax時の荷重 1/10δm;0.1Pmax時の変位

1/10 0 m, 0.11 maxed v) 2/12

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとするが、荷重が大きく低下した場合はその時点とする。

写真 3.4-1 試験体 P29M57-65-1 試験前

写真 3.4-3 試験体 P29M57-65-1 外層積層面のせん断破壊

写真 3.4-5 試験体 P29M57-65-1 解体後

写真 3.4-2 試験体 P29M57-65-1 積層面のせん断破壊

写真 3.4-4 試験体 P29M57-65-1 外層の引張破壊

写真 3.4-6 試験体 P29M57-65-2 外層の面外方向への剥がれ

写真 3.4-7 試験体 P29M57-65-2 積層接着面のせん断破壊

写真 3.4-9 試験体 P29M57-65-3 木材の支圧による降伏

写真 3.4-11 試験体 P29M57-65-3 ビスの折損、木材の支圧破壊

写真 3.4-8 試験体 P29M57-65-2 解体後 集合型破壊

写真 3.4-10 試験体 P29M57-65-3 外層積層面のややズレ

写真 3.4-12 試験体 P29M57-65-4 外層の面外への孕み

写真 3.4-13 試験体 P29M57-65-4 ビスの折損、木材の支圧破壊

写真 3.4-15 試験体 P29M57-65-5 解体後 集合型破壊

写真 3.4-17 試験体 P29M57-65-6 ビスの曲げ降伏

写真 3.4-14 試験体 P29M57-65-5 外層のせん断によるズレ

写真 3.4-16 試験体 P29M57-65-5 解体後 集合型破壊

写真 3.4-18 試験体 P29M57-65-6 ビスの折損、木材の支圧破壊

(2)試験体 P29M57-90

試験体 P29M57-90 の特性値を表 3.4-2 に、各試験体の荷重-変位曲線を図 3.4-8 に に示す。破壊性状を写真 3.4-19~写真 3.4-20 に示す。破壊性状はビスによる木材の支 圧破壊とビスの折損となった。

<hr/>	
	P29M57-90
項目	1
Pm (kN)	210.9
δ m (mm)	9.61
δu (mm)	11.41
降伏耐力 Py (kN)	142.6
δy (mm)	2.65
終局耐力 Pu (kN)	191.6
初期剛性 K (kN/mm)	51.72
降伏点変位 δv(mm)	3.70565
塑性率 μ=δu/δv	3.08
構造特性係数 Ds	0.44

表 3.4-2 P29M57-90 の特性値

写真 3.4-19 試験体 P29M57-90-1 ビスの曲げ降伏

写真 3.4-20 試験体 P29M57-90-1 ビスの折損、木材の支圧破壊

(3)試験体 P29M55-90

試験体 P29M55-90 の特性値を表 3.4-3 に、各試験体の荷重-変位曲線を図 3.4-9~ 図 3.4-11 に、包絡線の比較を図 3.4-12 に示す。破壊性状を写真 3.4-21~写真 3.4-36 に示す。破壊性状は、1 体目は、フィンガージョイント(以下 FJ と呼ぶ)部分での引張 破断と積層接着面のせん断破壊、2 体目は集合型破壊、3 体目は節の真下の目周り部 分が引張破壊し、いずれも概ね集合型破壊となった。

→ 試験体記号		P29M5590		亚坎荷	插滩后羊	亦動反粉	ばらつき	5%
項目	1	2	3	平均恒	悰凖憮左	変動怵数	係数	下限值
1/10Pm (kN)	20.1	24.1	20.1	21.4	2.31			
1/10 δ m (mm)	0.45	0.14	0.58	0.39	0.23			
2/5Pm (kN)	80.3	96.5	80.2	85.7	9.38			
2/5 δ m (mm)	1.82	1.77	2.27	1.95	0.28		_	
2/3Pm (kN)	133.8	160.8	133.7	142.8	15.62	0.109	0.656	93.6
2/3 δ m (mm)	3.70	4.19	4.95	4.28	0.63			
9/10Pm (kN)	180.6	217.1	180.5	192.7	21.10	1		
9/10 δ m (mm)	7.26	9.02	8.50	8.26	0.90			
Pm (kN)	200.7	241.2	200.6	214.2	23.41]		
δ m (mm)	9.45	13.46	10.82	11.24	2.04			
δu時荷重 (kN)	197.0	226.8	160.5	194.8	33.21]		
δ u (mm)	9.60	17.33	29.98	18.97	10.29			
降伏耐力 Py (kN)	112.9	142.5	101.7	119.0	21.08	0.177	0.442	52.5
δ y (mm)	2.77	3.07	3.10	2.98	0.18			
終局耐力 Pu (kN)	172.9	217.7	182.1	190.9	23.66			
初期剛性 K (kN/mm)	40.80	46.40	32.80	40.00	6.84			
降伏点変位 δv(mm)	4.24	4.69	5.55	4.83	0.67]		
塑性率 μ=δu/δv	2.26	3.70	5.40	3.79	1.57]		
構造特性係数 Ds	0.53	0.40	0.32	0.42	0.11			

表 3.4-3 試験体 P29M55-90 の特性値

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとするが、荷重が大きく低下した場合はその時点とする。

試験体 P29M55-90-1 試験前 写真 3.4-21

写真 3.4-23 試験体 P29M55-90-1 外層積層面のせん断破壊

40 45 各試験体の包絡線

写真 3.4-22 試験体 P29M55-90-1 積層面のせん断破壊

写真 3.4-24 試験体 P29M55-90-1 外層 FJ 部での引張破壊

写真 3.4-25 試験体 P29M55-90-1 解体後

写真 3.4-27 試験体 P29M55-90-2 積層接着面のせん断破壊

写真 3.4-26 試験体 P29M55-90-1 ビスはほぼ変形なし

写真 3.4-28 試験体 P29M55-90-2 集合型破壊

写真 3.4-29 試験体 P29M55-90-2 積層接着面のせん断破壊

写真 3.4-30 試験体 P29M55-90-2 外層積層面のややズレ

写真 3.4-31 試験体 P29M55-90-2 集合型破壊

写真 3.4-33 試験体 P29M55-90-3 ビスの折損、木材の支圧破壊

写真 3.4-35 試験体 P29M55-90-3 部分的な集合型破壊

写真 3.4-32 試験体 P29M55-90-3 試験後の様子

写真 3.4-34 試験体 P29M55-90-3 節下部からの部分的な引張+せん断破壊

写真 3.4-36 試験体 P29M55-90-5 ビスの変形

(4)試験体 P29MC55-90

試験体 P29MC55-90 の特性値を表 3.4-4 に、各試験体の荷重-変位曲線を図 3.4-13 ~図 3.4-15 に、包絡線の比較を図 3.4-16 に示す。破壊性状を写真 3.4-37~写真 3.4-49 に示す。破壊性状は、1、2 体目の一部が集合型破壊となったが、ほぼビスによる木材の支圧破壊とビスの折損となった。

→ 試験体記号	P29MC5590			亚均齿	插滩信兰	亦動反對	ばらつき	5%
項目	1	2	3	平均恒	惊华偏左	変動係数	係数	下限值
1/10Pm (kN)	21.0	20.1	20.1	20.4	0.52			
1/10 δ m (mm)	0.63	0.71	0.42	0.59	0.15			
2/5Pm (kN)	84.1	80.5	80.4	81.7	2.11	1		
2/5 δ m (mm)	2.31	2.45	1.71	2.16	0.39			
2/3Pm (kN)	140.1	134.2	134.0	136.1	3.47	0.025	0.921	125.3
2/3 δ m (mm)	5.53	5.87	3.18	4.86	1.46			
9/10Pm (kN)	189.1	181.2	180.9	183.7	4.65			
9/10 δ m (mm)	9.30	9.93	7.41	8.88	1.31			
Pm (kN)	210.1	201.3	201.0	204.1	5.17			
δ m (mm)	16.95	18.45	9.60	15.00	4.74			
δu時荷重(kN)	168.1	168.5	160.8	165.8	4.33			
δ u (mm)	23.83	30.00	21.69	25.17	4.31			
降伏耐力 Py (kN)	98.4	93.8	126.3	106.2	17.59	0.166	0.477	50.6
δ y (mm)	2.91	3.10	2.86	2.96	0.13			
終局耐力 Pu (kN)	187.0	183.1	179.2	183.1	3.90			
初期剛性 K (kN/mm)	33.80	30.30	44.20	36.10	7.23			
降伏点変位 δv(mm)	5.53	6.04	4.05	5.21	1.03			
塑性率 μ=δu/δv	4.31	4.97	5.36	4.88	0.53	1		
構造特性係数 Ds	0.36	0.33	0.32	0.34	0.02	1		

表 3.4-4 試験体 P29MC55-90 の特性値

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとする。

図 3.4-15 試験体 P29MC55-90-3 P8 曲線

写真 3.4-37 試験体 P29MC55-90-1 試験終了後

写真 3.4-39 試験体 P29MC55-90-1 ビスの曲げ降伏、折損

写真 3.4-38 試験体 P29MC55-90-1 外層のせん断破壊

写真 3.4-40 試験体 P29MC55-90-1 一部集合型破壊

写真 3.4-41 試験体 P29MC55-90-1 一部集合型破壊

写真 3.4-43 試験体 P29MC55-90-2 節下部からの割れ

写真 3.4-45 試験体 P29M55-90-2 一部集合型破壊

写真 3.4-42 試験体 P29MC55-90-2 一部集合型破壊

写真 3.4-44 試験体 P29MC55-90-2 一部集合型破壊

写真 3.4-46 試験体 P29M55-90-3 試験終了後

写真 3.4-47 試験体 P29MC55-90-3 ビスの曲げ、木材の支圧による降伏

写真 3.4-48 試験体 P29MC55-90 ビスの曲げ、木材の支圧による降伏

写真 3.4-49 試験体 P29M55-90-3 ビスの曲がり、折損

(5)試験体 O3523G

試験体 O3523G の特性値を表 3.4-5 に、各試験体の荷重-変位曲線を図 3.4-17~図 3.4-22 に、包絡線の比較を図 3.4-23 に示す。破壊性状を写真 3.4-50~写真 3.4-79 に示す。

破壊性状は、全ての試験体において CLT 積層接着面のせん断破壊となった。

	試験体記号							亚坎荷	 插 淮 庐 主	亦動反粉	ばらつき	5%
項目		1	2	3	4	5	6	平均恒	保毕佣定	泛到休奴	係数	下限值
1/10Pm (ki	N)	12.4	10.4	11.0	11.9	11.6	11.5	11.45	0.69			
$1/10\;\delta$ m (r	mm)	1.87	0.20	0.10	0.28	0.24	0.36	0.51	0.67			
2/5Pm (kN))	49.6	41.7	43.8	47.5	46.3	46.0	45.81	2.76			
$2/5 \delta m (m$	m)	4.83	4.39	2.31	2.43	2.88	2.49	3.22	1.10			
2/3Pm (kN))	82.6	69.4	73.1	79.1	77.1	76.7	76.34	4.60	0.060	0.860	65.60
$2/3 \delta m$ (m	m)							#DIV/0!	#DIV/0!			
9/10Pm (ki	N)	111.5	93.8	98.7	106.8	104.1	103.6	103.06	6.21			
9/10δm (r	mm)	13.42	13.05	10.44	10.89	9.00	8.47	10.88	2.03			
Pm (kN)		123.9	104.2	109.6	118.6	115.6	115.1	114.52	6.90			
δ m (mm)		16.78	19.61	14.73	17.60	16.50	13.28	16.41	2.21			
δu時荷重	(kN)	99.1	83.3	87.7	94.9	92.5	92.1	91.61	5.52			
δu (mm)		19.96	25.88	16.80	22.35	21.53	20.23	21.12	3.00			
降伏耐力 F	Py (kN)	70.5	58.8	48.5	49.5	47.2	60.6	55.84	9.11	0.163	0.619	34.50
δy (mm)		5.94	8.19	3.54	3.31	3.92	4.03	4.82	1.89			
終局耐力 F	Pu (kN)	112.8	101.3	99.0	108.1	111.0	106.3	106.41	5.42			
初期剛性 K	K (kN/mm)	12.56	7.46	14.88	16.55	13.14	16.21	13.47	3.35			
降伏点変位	<u>ξ</u> δν(mm)	9.22	13.80	6.82	7.18	8.40	6.69	8.68	2.69			
塑性率 μ=	δu/δv	2.17	1.88	2.46	3.11	2.56	3.03	2.54	0.48			
構造特性係	数 Ds	0.65	0.76	0.58	0.49	0.57	0.50	0.59	0.10			

表 3.4-5 試験体 O3523G の特性値

図 3.4-23 試験体 O3523G 包絡線の比較

写真 3.4-50 試験体 O3523G-1 試験実施の様子

写真 3.4-51 試験 O3523G-1 加力中、CLT 材の割裂

写真 3.4-52 試験体 O3523G-1 試験後 CLT の割裂

写真 3.4-53 試験 O3523G-1 CLT 材の割裂、積層接着面のせん断破壊

写真 3.4-54 試験体 O3523G-1 解体後 CLT の割裂、ビス孔の支圧

写真 3.4-55 試験 O3523G-1 解体後 積層接着面のせん断破壊

写真 3.4-56 試験体 O3523G-1 解体後 積層接着面のせん断破壊

写真 3.4-57 試験 O3523G-1 解体後 ビスの曲げ変形

写真 3.4-58 試験体 O3523G-2 試験後 CLT の割裂

写真 3.4-59 試験 O3523G-2 CLT 材の割裂、積層接着面のせん断破壊

写真 3.4-60 試験体 O3523G-2 試験後 CLT 材の割裂、積層接着面のせん断破壊

写真 3.4-61 試験 O3523G-2 積層接着面のせん断破壊

写真 3.4-62 試験体 O3523G-2 解体後 CLT 材の割裂、ビス孔の支圧

写真 3.4-63 試験 O3523G-2 解体後 積層接着面のせん断破壊

写真 3.4-64 試験体 O3523G-2 解体後 積層接着面のせん断破壊

写真 3.4-65 試験 O3523G-3 試験後 CLT 材の割裂

写真 3.4-66 試験体 O3523G-3 試験後 積層接着面のせん断破壊

写真 3.4-67 試験 O3523G-3 解体後 CLT 材の割裂

写真 3.4-68 試験体 O3523G-3 解体後 積層接着面のせん断破壊

写真 3.4-69 試験 O3523G-4 試験後 積層接着面のせん断破壊

写真 3.4-70 試験体 O3523G-4 試験後 積層接着面のせん断破壊

写真 3.4-71 試験 O3523G-4 解体後 積層接着面のせん断破壊

写真 3.4-72 試験体 O3523G-4 解体後 積層接着面のせん断破壊

写真 3.4-73 試験 O3523G-5 試験後 CLT 材の割裂

写真 3.4-74 試験体 O3523G-5 解体後 CLT 材の割裂

写真 3.4-75 試験 O3523G-5 解体後 積層接着面のせん断破壊

写真 3.4-76 試験体 O3523G-6 試験後 CLT 材の割裂

写真 3.4-77 試験 O3523G-6 試験後 積層接着面のせん断破壊

写真 3.4-78 試験体 O3523G-6 解体後 積層接着面のせん断破壊

写真 3.4-79 試験 O3523G-6 解体後 CLT 材の割裂

(6)試験体 O3041

試験体 O3041 の特性値を表 3.4-6 に、各試験体の荷重-変位曲線を図 3.4-24~図 3.4-30 に、包絡線の比較を図 3.4-31 に示す。破壊性状を写真 3.4-80~写真 3.4-119 に示す。

破壊性状は、繰り返しの変位を決めるための単調加力試験体においてフィンガージョイントからの強軸層の引張破壊となったが、δyの算出に大過ないとして当該試験体で繰り返しの変位を決定した。試験体1体目も同様の壊れ方をしたが、それ以外の 試験体では積層接着面のせん断破壊となった。

試験体記号							TT Ha lak	新学生	संद की दिन अग	ばらつき	5%
項目	1	2	3	4	5	6	平均旭	悰华偏左	发明冷叙	係数	下限值
1/10Pm (kN)	12.4	11.5	11.3	11.8	11.1	12.5	11.8	0.58			
1/10 δ m (mm)	0.10	0.35	0.14	0.23	0.11	0.21	0.19	0.09			
2/5Pm (kN)	49.4	46.0	45.4	47.1	44.3	50.0	47.0	2.26	1		
2/5δm (mm)	4.52	3.97	1.79	3.93	1.55	2.70	3.08	1.24			
2/3Pm (kN)	82.4	76.7	75.6	78.5	73.8	83.3	78.4	3.79	0.048	0.888	69.6
2/3δm (mm)	9.80	9.19	5.39	9.87	5.30	7.06	7.77	2.14			
9/10Pm (kN)	111.2	103.6	102.1	105.9	99.6	112.4	105.8	5.09			
9/10 δ m (mm)	19.39	17.24	10.35	22,40	9.51	15.33	15.70	5.06			
Pm (kN)	123.6	115.1	113.4	117.7	110.7	124.9	117.6	5.67			
δ m (mm)	33.50	24.06	16.81	42.51	12.80	26.50	26.03	10.88			
δu時荷重(kN)	123.6	97.4	109.7	115.8	91.4	120.2	109.7	12.86			
δ u (mm)	33.50	25.54	18,02	45.52	15.20	29.02	27.80	11.02			
降伏耐力 Py (kN)	74.9	64.2	56.0	69.5	51.8	69.8	64.4	8.89	0.138	0.678	43.6
δ y (mm)	8.42	6.83	2.65	7.89	2.37	5.36	5.59	2.60			
終局耐力 Pu (kN)	115.5	105.2	99.9	110.7	94.3	116.6	107.0	8.87	0.083	0.806	86,2
初期剛性 K (kN/mm)	8.90	9.40	21.13	8.81	21.86	13.02	13.85	6.12			
降伏点変位 δv(mm)	12.98	11.19	4.73	12.57	4.31	8.96	9.12	3.83			
塑性率 μ=δu/δv	2,58	2.28	3.81	3.62	3.53	3.24	3.18	0.61			
構造特性係数 Ds	0.49	0.53	0.39	0.40	0.41	0.43	0.44	0.06			

表 3.4-6 試験体 O3041 の特性値

1/10Pm;0.1Pmax時の荷重

1/10 δm;0.1Pmax時の変位

図 3.4-25 試験体 O3041-1 P8 曲線

写真 3.4-80 試験体 O3041-0 試験後

写真3.4-82 試験体O3041-0 試験後 引張破壊及び積層面のせん断破壊

写真 3.4-81 試験体 O3041-0 2 層目の強軸層で引張破壊

写真3.4-83 試験体O3041-1 試験後 FJ部分による引張、曲げ破壊、 積層接着面のせん断破壊

写真3.4-84 試験体O3041-1 試験後 引張破壊及び積層面のせん断破壊

写真 3.4-86 試験体 O3041-1 解体後

写真 3.4-88 試験体 O3041-1 解体後

写真3.4-85 試験体O3041-1 試験後 FJ部分による引張、曲げ破壊、 積層接着面のせん断破壊

写真 3.4-89 試験体 O3041-1 解体後

写真3.4-90 試験体O3041-2 試験後 外層の積層接着面のせん断破壊

写真3.4-92 試験体O3041-2 解体後 外層の積層接着面のせん断破壊

写真 3.4-94 試験体 O3041-2 解体後 外層の積層接着面のせん断破壊

写真 3.4-91 試験体 O3041-1 試験後 外層の積層接着面のせん断破壊

写真3.4-93 試験体O3041-2 解体後 外層の積層接着面のせん断破壊

写真3.4-95 試験体O3041-3 試験後 外層の積層接着面のせん断破壊

写真3.4-97 試験体O3041-3 解体後 外層の積層接着面のせん断破壊

写真 3.4-96 試験体 O3041-3 試験後 外層の積層接着面のせん断破壊

写真3.4-98 試験体O3041-3 解体後 外層の積層接着面のせん断破壊

写真 3.4-99 試験体 O3041-4 試験後 外層の積層接着面のせん断破壊

写真 3.4-101 試験体 O3041-4 試験後 外層の積層接着面のせん断破壊

写真 3.4-100 試験体 O3041-4 解体後 外層の積層接着面のせん断破壊

写真 3.4-102 試験体 O3041-4 解体後 外層の積層接着面のせん断破壊

写真 3.4-103 試験体 O3041-4 解体後 ビス孔の支圧破壊

写真 3.4-104 試験体 O3041-4 解体後 外層の積層接着面のせん断破壊

写真 3.4-105 試験体 O3041-4 解体後 外層の積層接着面のせん断破壊

写真 3.4-106 試験体 O3041-5 試験後 外層の積層接着面のせん断破壊

写真 3.4-107 試験体 O3041-5 試験後 外層の積層接着面のせん断破壊

写真 3.4-108 試験体 O3041-5 解体後 外層の積層接着面のせん断破壊

写真 3.4-110 試験体 O3041-5 解体後 外層の積層接着面のせん断破壊

写真 3.4-112 試験体 O3041-6 試験後 外層の積層接着面のせん断破壊

写真 3.4-109 試験体 O3041-5 解体後 外層の積層接着面のせん断破壊

写真 3.4-111 試験体 O3041-5 解体後 外層の積層接着面のせん断破壊

写真 3.4-113 試験体 O3041-6 試験後 下材は損傷無し

写真 3.4-114 試験体 O3041-6 試験後 外層の積層接着面のせん断破壊

写真 3.4-116 試験体 O3041-6 試験後 外層の積層接着面のせん断破壊

写真 3.4-118 試験体 O3041-6 解体後 外層の積層接着面のせん断破壊

写真 3.4-115 試験体 O3041-6 試験後 鋼板及びビス。ビスの折れは軽微

写真 3.4-117 試験体 O3041-6 試験後 外層の積層接着面のせん断破壊

写真 3.4-119 試験体 O3041-6 解体後 外層の積層接着面のせん断破壊

(7) 試験体 O3541

試験体 O3541 の特性値を表 3.4-7 に、各試験体の荷重-変位曲線を図 3.4-32~図 3.4-37 に、包絡線の比較を図 3.4-38 に示す。破壊性状を写真 3.4-120~写真 3.4-151 に示す。

破壊性状は、積層接着面のせん断破壊となったが、破断に至るまでビス部分で曲げ 降伏後も変形し、木部でめり込み変形していたことが分かった。

→ 試験体記号		STF35						亚坎陆 博潍启关	赤毛広光	ばらつき	5%
項目	1	2	3	4	5	6	平均旭	標準偏差	发動係毅	係数	下限值
1/10Pm (kN)	12.0	12.7	12.9	12.9	12.6	13.3	12.7	0.43			
1/10 δ m (mm)	0.18	0.19	0.13	0.23	0.20	0.26	0.20	0.04			
2/5Pm (kN)	48.2	50.9	51.6	51.7	50.3	53.1	51.0	1.65			
2/5 δ m (mm)	2.84	3.64	2.28	2.81	3.12	4.57	3.21	0.80			
2/3Pm (kN)	80.3	84.9	86.0	86.2	83.8	88.4	84.9	2.74	0.032	0.925	78.5
2/3 δ m (mm)	9.28	8.47	6.32	7.85	9.64	9.68	8.54	1.30			
9/10Pm (kN)	108.4	114.6	116.1	116.4	113.2	119.4	114.7	3.71			
9/10 δ m (mm)	20.00	16.89	17.87	17.18	17.96	19.31	18.20	1.22			
Pm (kN)	120.5	127.4	129.0	129.3	125.8	132.6	127.4	4.08	1		
δm (mm)	28.50	29.53	27.01	39.01	27.00	31.02	30.35	4.51			
δu時荷重 (kN)	119.4	121.6	106.0	119.1	122.7	120.4	118.2	6.13			
δ u (mm)	30.07	35.00	35.02	44.51	28.05	37.57	35.04	5.82			
降伏耐力 Py (kN)	65.2	70.7	79.0	70.6	61.4	78.4	70.9	7.00	0.099	0.769	54.5
δ y (mm)	5.97	6.30	5.45	5.59	5.32	8.24	6.15	1.09			
終局耐力 Pu (kN)	109.0	119.6	120.6	122.0	112.2	126.3	118.3	6.46	0.055	0.872	103.1
初期剛性 K (kN/mm)	10.92	11.22	14.50	12.63	11.54	9.51	11.72	1.69			
降伏点変位 δv(mm)	9.98	10.66	8.32	9.66	9.72	13.28	10.27	1.66	1		
塑性率 $\mu = \delta u / \delta v$	3.01	3.28	4.21	4.61	2.89	2.83	3.47	0.75			
構造特性係数 Ds	0.45	0.42	0.37	0.35	0.46	0.46	0.42	0.05			

表 3.4-7 試験体 O3541 の特性値

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

図 3.4-35 試験体 O3541-4 P8 曲線

写真 3.4-120 試験体 O3541-1 試験後 積層接着面のせん断破壊

写真 3.4-122 試験体 O3541-1 解体後 積層接着面のせん断破壊

写真 3.4-121 試験体 O3541-1 試験後 積層接着面のせん断破壊

写真 3.4-123 試験体 O3541-1 解体後 積層接着面のせん断破壊

写真 3.4-124 試験体 O3541-2 試験後 積層接着面のせん断破壊

写真 3.4-126 試験体 O3541-2 試験後 積層接着面のせん断破壊

写真 3.4-128 試験体 O3541-2 解体後 積層接着面のせん断破壊

写真 3.4-125 試験体 O3541-2 試験後 積層接着面のせん断破壊

写真 3.4-127 試験体 O3541-2 解体後 積層接着面のせん断破壊

写真 3.4-129 試験体 O3541-2 解体後 鋼板及びビス。ビスの折れは軽微

写真 3.4-130 試験体 O3541-3 試験後 積層接着面のせん断破壊

写真 3.4-132 試験体 O3541-3 解体後 積層接着面のせん断破壊

積層接着面のせん断破壊

写真 3.4-131 試験体 O3541-3 試験後 積層接着面のせん断破壊

写真 3.4-133 試験体 O3541-3 解体後 積層接着面のせん断破壊

写真 3.4·134 試験体 O3541·4 試験後 写真 3.4·135 試験体 O3541·4 試験後 ビスの曲げ変形

写真 3.4-136 試験体 O3541-4 試験後 積層接着面のせん断破壊

写真 3.4-139 試験体 O3541-4 解体後 積層接着面のせん断破壊

写真 3.4-137 試験体 O3541-4 試験後 積層接着面のせん断破壊

写真 3.4-138 試験体 O3541-4 解体後 積層接着面のせん断破壊

写真 3.4-140 試験体 O3541-5 試験後 積層接着面のせん断破壊

写真 3.4-141 試験体 O3541-5 試験後 積層接着面のせん断破壊

写真 3.4-143 試験体 O3541-5 解体後 積層接着面のせん断破壊

写真 3.4-145 試験体 O3541-5 解体後 積層接着面のせん断破壊

写真 3.4-142 試験体 O3541-5 解体後 積層接着面のせん断破壊

写真 3.4-144 試験体 O3541-5 解体後 積層接着面のせん断破壊

写真 3.4-146 試験体 O3541-5 解体後 積層接着面のせん断破壊

写真 3.4-147 試験体 O3541-6 試験後 積層接着面のせん断破壊

写真 3.4-149 試験体 O3541-6 解体後 損傷が少ない上材

写真 3.4-151 試験体 O3541-6 解体後 積層接着面のせん断破壊

写真 3.4-148 試験体 O3541-6 試験後 積層接着面のせん断破壊

写真 3.4-150 試験体 O3541-6 解体後 積層接着面のせん断破壊

3.5 集合型破壊の推定式

(1) 強軸試験体

推定式は基本的に文献 1)によるものとするが、文献 1)では全てのラミナを直交さ せて積層接着したもののみで検証を行っており、5層7プライのように一部のラミ ナが直交していない場合については想定していなかった。文献 1)における集合型破 壊の引張面積とせん断面積を図 3.5-1に示す。5層7プライの場合、外層のラミナ 間ではせん断破壊が生じないと仮定し、引張面積とせん断面積を図 3.5-2 とした。

すなわち単に「外層ラミナ」としていたものを「外層」と読み替えれば、文献1) の推定式が適用できるものとした。

図 3.5-1 文献 1)の集合型破壊 引張とせん断が生じる面積

図 3.5-2 本事業における 5 層 7 プライ を想定した引張とせん断が生じる面積

150

<正面>

(2) 弱軸試験体

弱軸試験体の推定式は、文献 1)による成果を修正し、文献 3)に掲載する際に幅は ぎ接着の有無によってせん断面積を変わるとして設計式を作成した。

本事業ではこれまで実施されてこなかった幅はぎありの試験を実施しているので、 改めて文献 1)、3)両方の計算方法で計算し、設計式の検証を行う。文献 1)のせん断 面積を図解したものを図 3.5-3、文献 3)のものを図 3.5-4 に示す。なお、本検討では 文献 3)の幅はぎ無し仕様については、図 3.5-4 に示す簡略化される前の面積で検討 を行うものとする。

図 3.5-3 文献 1)のせん断面積

<幅はぎ接着有り> 図 3.5-4 文献 3)のせん断面積

3.6 推定値と実験値の比較

文献 4)に示されているビスの設計式(以下「小林式」という)及び 3.5 項の設計式を用いてビス接合部の計算を行った。

(1)小林式による破壊モード

入力条件と出力結果を表 3.6-1 及び表 3.6-2 に示す。

CLT の面圧定数は、繊維平行層と繊維直交層をビスの埋め込み長さに応じて配分したものとした。ビス STS65 の埋め込み長さは、鋼板の厚みを引くと約 60 mmとなり、ちょうどラミナ 2 層分となるので、 $(K_{E1}+K_{E2})/2$ とした。

接合具の全塑性モーメントについては、(公財)日本住宅・木材技術センターが開催する「集成材等構造用タッピンねじ標準化検討委員会(委員長:稲山先生)」の業務の一環として実施した4点曲げ試験の試験結果を使用した。3体の試験結果から得られた Mmaxの平均値を採用している。STS・C65の引き抜き力は文献1)5章の平均値を採用しており、STS・HC90はSTS・C65の試験結果を元にねじ長さ分の割り増し(×6.5/5.5)を行った。

	項目		値	備考
	主材における有効径(mm)	d	4.4	谷径×1.1
	主材側の埋め込み長さ(mm)	t	59	
	主材のヤング係数(N/mm)	E_1	6900	スギ製材
入	繊維平行層の面圧定数(N/mil)	K_{E1}	86.7	繊維平行
力条	繊維直交層の面圧定数(N/mil)	K_{E2}	25.5	繊維直交
件	面圧定数	K_E	56.1	
	接合具のヤング率(N/mẩ)	E	205000	
	スギ繊維方向面圧降伏応力(N/mm)	$F_{E^{1}}$	21.5	接合部設計マニュアル ⁶⁾ P108
	接合具の全塑性モーメント(N・mm)	M_p	14180	Mmax※4点曲げ試験結果sts135の値
	主材・材料内の有効剛体長さ(mm)	$t_{\it efl}$	31.44	
	接合部の剛性(kN/mm)	K_{s1}	1.94	
	接合具の回転中心距離or塑性ヒンジ	L_1	43.48	
	距離	L_2	24.49	
	降伏耐力mode1(kN)	P_{yl}	114.99	
	降伏耐力mode2(kN)	P_{y2}	2.32	
出力	降伏耐力(MIN)	P_y	2.32	
結	降伏変位(mm)	δ_y	1.19	=Py÷Ks
果	接合具の軸力(kN)	P_{pull}	6.80	文献1)5章の実験結果より
		Pax	6.80	
	二次剛性	K_s '	0.28	
	最大荷重(kN)	P_m	7.18	
	最大荷重時の変位(mm)	δ_{max}	11.37	
	終局変位(mm)	δ_u	18.72	

表 3.6-1 STS・C65 の計算に用いた入力条件と出力結果

	項目		値	備考
	主材における有効径(mm)	d	4.4	谷径×1.1
	主材側の埋め込み長さ(mm)	t	59	
	主材のヤング係数(N/mm)	E_1	6900	スギ製材
入	繊維平行層の面圧定数(N/mm)	K_{E1}	86.7	繊維平行
力条	繊維直交層の面圧定数(N/mm)	K_{E2}	25.5	繊維直交
件	面圧定数	K_E	56.1	
	接合具のヤング率(N/mẩ)	Ε	205000	
	スギ繊維方向面圧降伏応力(N/mẩ)	$F_{E^{I}}$	21.5	接合部設計マニュアル ⁶⁾ P108
	接合具の全塑性モーメント(N・mm)	M_p	14180	Mmax※4点曲げ試験結果sts135の値
	主材・材料内の有効剛体長さ(mm)	$t_{\it efI}$	31.44	
	接合部の剛性(kN/mm)	K_{s1}	1.94	
	接合具の回転中心距離or塑性ヒンジ	L_1	43.48	
	距離	L_2	24.49	
	降伏耐力mode1(kN)	P_{yl}	114.99	
	降伏耐力mode2(kN)	P_{y2}	2.32	
出力	降伏耐力(MIN)	P_y	2.32	
結	降伏変位(mm)	δ_y	1.19	=Py÷Ks
果	接合具の軸力(kN)	P _{pull}	8.04	STS・C65のPull×65/55
		Pax	8.04	
	二次剛性	K_s '	0.33	
	最大荷重(kN)	P_m	8.36	
	最大荷重時の変位(mm)	δ_{max}	12.27	
	終局変位(mm)	δ_u	19.62	

表 3.6-2 STS・HC90 の計算に用いた入力条件と出力結果

(2)算定結果

前述の小林式、文献 1)及び文献 3)の設計式に基づいて、推定値の算出を行った。計算に 用いた入力条件を表 3.6-3~表 3.6-5 に示す。表 3.6-3の条件は実験の平均値との比較をし、 推定結果の適合性を検証するため、入力に使用するラミナの引張強度及びせん断強度は、 実験値及び実験値に近い値とした。一方、表 3.6-4 は、設計に用いる場合を意識して、基準 強度あるいはばらつきを考慮して低減係数を乗じた数値とし、安全側に評価するものとした。

算定結果を表 3.6-6 及び表 3.6-7 に示す。更に表 3.6-6 の内容をグラフ化して比較しやす くしたものを図 3.6-1 及び図 3.6-2 に示す。それぞれの図において、上図は各破壊モードにお ける推定値と実験値の比較であり、下図は各破壊モードで破壊した試験体の体数を示してい る。

表 3.6・6 及び図 3.6・1 より、強軸試験体においては、ビスによる曲げ降伏後の引き抜けで破 断する「ビス破壊(小林式)」が「集合型(平均)」を下回る P53、P77、P77T、P77U、 P29MC55・90 はビスによる引き抜きで決まっている。なお、P29 MC55・90 についてはビスの 破壊モード及び集合型による破壊モードの値が近しいこともあり、一部が集合型破壊する様 子が見られた。

「集合型(平均)」が「ビス破壊(小林式)」を下回る P29M、P53M、P29MC では集合型破壊、 両者が比較的近い値となる P29、P29M57-65、P29M55-90 においては実際の破壊も両者 が混在した結果となり、計算による破壊モードと実験値はよく一致する結果となった。

一方、弱軸試験体については、全ての試験体において、最終的には、積層接着面のせん断破壊するという結果となったが、ビスの破壊モードが集合型破壊モードの計算値を上回る試験体 O3041、O3541においては、ビスが曲げ降伏し、木材の支圧によるめり込みが進展した後に起こっているため、計算による破壊モードと実験結果は一致したといえる。

実際の実験結果が集合型破壊しやすい理由としては、純粋なせん断ではなく、面外方向 へ剥がれるようにして破壊することに原因があると考えられる。したがって、実用においては弱 軸試験体については集合型破壊を安全側の数値で評価した方が望ましい。

2(0,00 1)	1 = 11	10/1	
項目	記号	値	備考
ラミナの引張強度(NJ)(N/mẩ)	F _{tNJ}	28.8	文献 ⁷⁾ 高知県シミュレーションより。計算で求 める場合はFJ*1/0.82
ラミナの引張強度(FJ)(N/mẩ)	F _{tFJ}	26.2	文献 ⁷⁾ 高知県シミュレーションより。
接着層のせん断強度(要素試験)	F _{ge}	1.56	文献 ⁸⁾ 林野庁補助事業 木構造振興報告書 せん断要素試験より
ラミナのせん断	Fs	2.4	製材の基準強度÷0.75

表 3.6-3 計算に用いた入力条件(強度性能)

表 3.6-4 計算に用いた入力条件(強度性能、安全側で評価)

項目	記号	値	備考
ラミナの引張強度(NJ)(N/mm)	F _t	16	CLT告示案におけるM60A若しくはM6OBの引 張強度
接着層のせん断強度(要素試験)	F _{ge}	1.17	文献 ⁸⁾ 林野庁補助事業 木構造振興報告書 せん断要素試験の値×0.75
ラミナのせん断	Fs	1.8	製材の基準強度

表 3.6-5 強軸試験体の計算に用いた入力条件(各寸法等)

試験体	ラミナの 厚(mm)	ラミナの 幅(mm)	ビス配 置の幅 (mm)	最上 の 列 の ビ ス 数 (本)	ビス配 置の長 さ(mm)	せの 方 の 方 に 数 の の 本 本	ビスの 山径 (mm)	試験実 施事業
	t	WL	W _b	т	L _b	m	d	
P29	30	124	100	3	290	5	6.5	
P53	30	124	100	3	530	5	6.5	
P77	30	124	100	3	770	5	6.5	
P77T	30	124	100	5	770	10	6.5	***
P77U	30	124	100	3	770	5	6.5	又厭り
P29M	30	124	100	3	290	5	6.5	
P53M	30	124	100	3	530	5	6.5	
P29MC	30	124	100	3	290	5	6.5	
P29M57	60	124	100	3	290	5	6.5	
P29M57-90	60	124	100	3	290	5	6.5	当該事
P29M55-90	60	124	100	3	290	5	6.5	業
P29MC55-90	60	124	100	3	290	5	6.5	

						推定値						実験値	ī(平均)
<u>=+</u> ₽ ~ /+	①ビスの一面せん断に よる最大耐力			②ラミナ る	②ラミナ境界部が影響す る破壊モード			③ラミナ境界部が破壊に影響し ない破壊モード					
武	本数 (本)	1本当 たりの 最大耐 力(kN)	<i>Рь</i> (kN)	<i>P_{t1}</i> (kN)	P _{g1} (kN)	P _{R1} (kN)	P _{t2} (kN)	P _{g1} (kN)	P _s (kN)	<i>P_{R2}</i> (kN)	, P _{R1} , P _{R2})	(kN)	Pmax (kN)
P29	23	7.18	165.1	90.3	56.1	146.4	-	-	-	-	146.4	86.3	151.4
P53	23	7.18	165.1	90.3	102.5	192.8	I	-	_	_	165.1	93.6	164.3
P77	23	7.18	165.1	90.3	148.9	239.2	1	-	_	-	165.1	90.6	164.8
P77T	23	7.18	165.1	79.1	148.9	228.0	1	-	-	-	165.1	84.2	161.4
P77U	23	7.18	165.1	90.3	148.9	239.2	_	-	-	-	165.1	100.5	179.1
P29M	31	7.18	222.6	90.3	56.1	146.4	1	-	_	-	146.4	83.2	167.6
P53M	41	7.18	294.4	90.3	102.5	192.8	1	-	-	-	192.8	93.6	218.5
P29MC	31	7.18	222.6	_	_	-	75.2	45.2	37.5	158.0	158.0	105.8	189.8
P29M57-65	31	7.18	222.6	180.6	56.1	236.7	-	-	-	-	222.6	115.4	200.4
P29M57-90	31	7.99	247.7	180.6	56.1	236.7	1	-	-	-	236.7	142.6	210.9
P29M55-90	31	7.99	247.7	180.6	56.1	236.7	-	-	-	-	236.7	119	214.2
P29MC55-90	31	7.99	247.7	1	1	-	150.3	45.2	75.1	270.7	247.7	106.2	204.1

表 3.6-6 計算による出力結果(平均値で比較)

				推定値				実験値(平均)	
	①ビスの 最大耐力	ビスの一面せん断による 大耐力			2)集合型	*			
試験体	1	1本当たり	P _b (kN)	木構造 告1	振興報 書 ¹⁾	設計施 アノ	Lマニュ レ ³⁾	Ру	Pmax
	本数	の最大耐 力(kN)		せん断 面積 (mẩ)	P _g (kN)	せん断 面積 (mẩ)	P _g (kN)		
РТО	18	7.18	129.24	64875	101.2	47676	74.4	49.0	98.6
O2023	18	7.18	129.24	43500	67.9	41000	64.0	31.7	71.3
O3530	18	7.18	129.24	64875	101.2	43996	68.6	49.5	99.9
O4623	18	7.18	129.24	73400	114.5	49612	77.4	55.4	102.6
O3541	18	7.18	129.24	64875	101.2	64875	101.2	55.8	114.5
O3523G	20	7.18	143.6	108600	169.4	82444	128.6	64.4	117.6
03041	20	7.18	143.6	122475	191.1	83612	130.4	71.6	125.6

						推定値						実験値(下限値)
≕睑休	①ビス0 よる最ナ	り一面せん に耐力	ん断に	②ラミナ る	②ラミナ境界部が影響す る破壊モード			└境界部 ない破り	が破壊に 壊モード	影響し	min(P,		
武频14	本数 (本)	1本当 たりの 最大耐 力(kN)	<i>Р</i> ь (kN)	<i>P_{t1}</i> (kN)	P _{g1} (kN)	P _{R1} (kN)	P _{t2} (kN)	P _{g1} (kN)	P _s (kN)	<i>P_{R2}</i> (kN)	, P _{R1} , P _{R2})	Py (kN)	(kN)
P29	23	7.18	165.1	50.2	42.1	92.2	-	-	_	_	92.2	68.0	126.8
P53	23	7.18	165.1	50.2	76.9	127.1	-	-	-	-	127.1	70.0	121.8
P77	23	7.18	165.1	50.2	111.7	161.9	-	-	-	-	161.9	66.2	129.3
P77T	23	7.18	165.1	43.9	111.7	155.6	-	-	_	-	155.6	74.0	151.5
P77U	23	7.18	165.1	50.2	111.7	161.9	-	-	-	-	161.9	80.1	150.9
P29M	31	7.18	222.6	50.2	42.1	92.2	-	-	-	-	92.2	3.1	55.7
P53M	41	7.18	294.4	50.2	76.9	127.1	-	-	-	-	127.1	25.9	111.2
P29MC	31	7.18	222.6	-	-	-	41.8	33.9	28.2	103.9	103.9	66.5	121.7
P29M57-65	31	7.18	222.6	100.3	42.1	142.4	-	-	-	-	142.4	95.4	158.7
P29M57-90	31	7.99	247.7	100.3	42.1	142.4	_	-	-	-	142.4	107	158.2
P29M55-90	31	7.99	247.7	100.3	42.1	142.4	-	-	-	-	142.4	52.5	140.4
P29MC55-90	31	7.99	247.7	-	-	_	83.5	33.9	56.3	173.8	173.8	50.6	188

表 3.6-7 計算による出力結果(安全側で評価)

				推定値				実験値(下限値)		
	①ビスの 最大耐力)一面せん]	断による	(2集合型					
試験体	本数	1本当た りの最大	PL	木構造 告1	振興報 ∎ ¹⁾	設計施□ アノ	Lマニュ レ ³⁾	Ру	Pmax	
		耐力 (kN)	(kN)	せん断 面積 (m ⁿ)	P _g (kN)	せん断 面積 (m ⁿ)	P _g (kN)			
РТО	18	7.18	129.2	64875	75.9	47676	55.8	40.1	84.9	
O2023	18	7.18	129.2	43500	50.9	41000	48.0	20.2	53.7	
O3530	18	7.18	129.2	64875	75.9	43996	51.5	38.5	85.8	
O4623	18	7.18	129.2	73400	85.9	49612	58.0	32.5	82.1	
O3523G	18	7.18	129.2	64875	75.9	64875	75.9	34.5	98.4	
03041	20	7.18	143.6	108600	127.1	82444	96.5	43.6	104.3	
03541	20	7.18	143.6	122475	143.3	83612	97.8	49.7	111.4	

■ビス破壊mode ■集合型破壊mode

参考文献

- *1) 木構造振興㈱:平成27年度林野庁委託事業 CLT等新たな製品・技術の開発・普及事業(CLT等接合 部データ事業) CLTパネルを用いたビス接合部検討事業報告書,平成28年3月
- *2) (財)日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計(2008年版),平成21年6月
- *3) (財)日本住宅・木材技術センター: 2016年版CLTを用いた建築物の設計施工マニュアル, 平成28年 10月
- *4)小林研治、稲山正弘、安藤直人:鋼板を側材に用いたビス接合部の一面せん断性能(3)ビス破断変位の推 定、日本木材学会(つくば)2008

第4章 引きボルト接合部試験

4.1 実験の目的

これまでの引きボルト接合部に関する研究は、CLTパネル工法告示を見据えて、振動台試験体における5階建て相当までの接合部として開発が行われてきた。

実際の設計ではプランによっては振動台試験体の接合部に掛かった応力より大きく なる可能性があること、また今後中高層建築物を目指していくためには3層3プライ、 5層5プライだけでなく、7層7プライや5層7プライの壁パネルに対応した接合部 を開発していくことが必要となる。

また、昨今では意匠的に CLT 内部に接合部を隠したいという要望も強くあること、 環境性能的にヒートブリッジにならないようにするという観点から、表面から座金や ナットが見えない納まりについても検討を行うこととした。

引きボルト接合部の特徴としては、一般的な接合方法と比べて中高層建築物に使った場合でも安価で、施工手間が変わらず、更に施工精度も厳しくないといった点が挙 げられる。一般の接合方法では要求耐力に応じて接合具本数が増えるが、引きボルト はボルト径と座金の面積・厚みが増えるだけなので、施工性は変わらず、コストの上 がり方も緩やかとなる。このため、中高層に適した接合方法であると言える。

4.2 試験体の概要

(1)試験体の種類

試験体の種類を表 4.2-1 に示す。CLT の種類はいずれも S60-5-7、A 種構成である が、幅はぎする仕様と幅はぎしない仕様の2 種類(製造メーカーの違いによる)とした。

計除什么	金物0	つ種類	CL	_Tの種類	試験
武殿144 石	座金の種類	ボルトの種類	CLTの規格	幅はぎの有無	体数
P5715G	$80 \times 210 \times t30$	M30、強度区分	Mx60-5-7、	幅はぎ接着有	6
P5715N	SS400	10.9、L550mm	A種構成	幅はぎ接着無	3
P5721G10	100×210×t30、 SS400	M30、強度区分 10.9、L550mm	Mx60−5−7、 A種構成	幅はぎ接着有	6

表 4.2-1 試験体の種類

(2)ボルトナット及び座金の仕様

ボルトナット及び座金の仕様を図 4.2-1 に示す。

図 4.2-1 ボルトナット及び座金の製作図

(3) 試験体の仕様

試験体の仕様を図 4.2-2~図 4.2-4 に示す。

図4.2-3 試験体 P5715N

119

4.3 試験方法

試験方法を図 4.3-1 に示す。

試験体は、上端部は M20 ボルトで引張治具と接合し、下端部はボルトを介して試験装置に六角ナット M30 により固定する。

試験は文献 1)に準じて行った。加力方法は単調引張試験結果より降伏変位 δyを求め、 δyの 1/2、1、2、4、6、8、12、16 倍の順に一方向繰り返し加力とする。

図 4.3-1 試験方法図

4.4 試験結果

(1)試験体 P5715G

試験体 P5715G の特性値を表 4.4-1 に、各試験体の荷重-変位曲線を図 4.4-1~図 4.4-6 に、包絡線の比較を図 4.4-7 に示す。破壊性状を写真 4.4-1~写真 4.4-33 に示す。破壊性状は、1 体目が端部外層の引張とせん断の複合破壊となり、それ以外は外層の座金下部部分の積層接着面のせん断破壊となった。

→ 試験体記号			P57	15G			亚杨库		The set of the	ばらつき	5%
項目	1	2	3	4	5	6	平均旭	標準備定	发期济效	係数	下限值
1/10Pm (kN)	32.6	33.1	29.1	28.4	26.7	27.0	29.5	2.76			
1/10 δ m (mm)	1.21	0.88	1.21	1.21	1.30	1.20	1.17	0.15			
2/5Pm (kN)	130.5	132.6	116.5	113.8	107.0	107.9	118.1	11.07			
2/5 δ m (mm)	2.86	2.23	3.25	2.90	3.44	3.11	2.97	0.42			
2/3Pm (kN)	217.4	221.0	194.2	189.6	178.3	179.8	196.7	18.44	0.094	0.780	153.4
2/3 δ m (mm)	4.48	3.57	5.65	4.91	6.20	5.36	5.03	0.93	1		
9/10Pm (kN)	293.5	298.3	262.2	256.0	240.7	242.8	265.6	24.86			
9/10 δ m (mm)	7.72	8.51	8.60	8.76	10.44	8.99	8.84	0.90			
Pm (kN)	326.2	331.5	291.3	284.4	267.4	269.8	295.1	27.67			
δ m (mm)	21.91	29.31	16.80	22.81	24.51	24.81	23.36	4.11			
δu時荷重 (kN)	325.8	329.8	280.7	280.0	265.6	260.9	290.5	29.98	1		
δu (mm)	22.51	30.00	30.00	30.00	30.00	30.00	28.75	3.06			
降伏耐力 Py (kN)	210.6	236.8	153.5	167.5	146.3	155.6	178.4	36.71	0.206	0.519	92.5
δ y (mm)	4.33	3.89	4.37	4.13	4.67	4.50	4.32	0,28			
終局耐力 Pu (kN)	305.5	305.7	276.1	269.0	249.9	256.0	277.0	23.98	0.087	0.797	220.7
初期剛性 K (kN/mm)	48.64	60.87	35.13	40.56	31.33	34.58	41.85	11.12			
降伏点変位 δv(mm)	6.28	5.02	7.86	6.63	7.98	7.40	6.86	1.12	1		
塑性率 μ=δu/δv	3.58	5.98	3.82	4.52	3.76	4.05	4.29	0.89	1		
構造特性係数 Ds	0.40	0.30	0.39	0.35	0.39	0.38	0.37	0.04			

表 4.4-1 試験体 P5715G の特性値

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとするが、荷重が大きく低下した場合はその時点とする。

図 4.4-7 試験体 P5715G 各試験体の包絡線

写真 4.4-1 試験体 P5715G-1 引張と積層接着面のせん断の複合破壊

写真 4.4-3 試験体 P5715G-1 引張と積層接着面のせん断の複合破壊

写真 4.4-5 試験体 P5715G-1 引張と積層接着面のせん断の複合破壊

写真 4.4-2 試験体 P5715G-1 引張と積層接着面のせん断の複合破壊

写真 4.4-4 試験体 P5715G-1 2 層目~4 層目のめり込み

写真 4.4-6 試験体 P5715G-1 引張と積層接着面のせん断の複合破壊

写真 4.4-7 試験体 P5715G-2 外層の積層接着面のせん断破壊

写真 4.4-9 試験体 P5715G-2 外層の積層接着面のせん断破壊

写真 4.4-8 試験体 P5715G-2 外層の積層接着面のせん断破壊

写真 4.4-10 試験体 P5715G-2 めり込み破壊

写真 4.4-11 試験体 P5715G-3 積層接着面のせん断破壊

写真 4.4-13 試験体 P5715G-3 積層接着面のせん断破壊

写真 4.4-15 試験体 P5715G-3 積層接着面のせん断破壊

写真 4.4-12 試験体 P5715G-3 外層の積層接着面のせん断破壊

写真 4.4-14 試験体 P5715G-3 外層の積層接着面のせん断破壊

写真 4.4-16 試験体 P5715G-3 外層の積層接着面のせん断破壊

写真 4.4-17 試験体 P5715G-4 積層接着面のせん断破壊

写真 4.4-18 試験体 P5715G-4 外層の積層接着面のせん断破壊

写真 4.4-19 試験体 P5715G-4 積層接着面のせん断破壊

写真 4.4-20 試験体 P5715G-4 外層の積層接着面のせん断破壊

写真 4.4-21 試験体 P5715G-5 積層接着面のせん断破壊

写真 4.4-23 試験体 P5715G-5 積層接着面のせん断破壊

写真 4.4-22 試験体 P5715G-5 めり込み

写真 4.4-24 試験体 P5715G-5 めり込み

写真 4.4-25 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4-26 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4-28 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4-29 試験体 P5715G-6 座金のめり込み

写真 4.4-27 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4-30 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4-32 試験体 P5715G-6 積層接着面のせん断破壊

写真 4.4·31 試験体 P5715G-6 座金のめり込み

写真 4.4-33 試験体 P5715G-6 座金、ボルトの変形

(2)試験体 P5715N

試験体 P5715N の特性値を表 4.4-2 に、各試験体の荷重-変位曲線を図 4.4-8~図 4.4-10 に、包絡線の比較を図 4.4-11 に示す。破壊性状を写真 4.4-34~写真 4.4-52 に示す。破壊性状は、内層ラミナの引張と積層接着面のせん断による複合破壊となった。

		P5715N		亚坎荷	 淮 / 戸 羊	亦動反粉	ばらつき	5%
項目	1	2	3	平均恒	惊华俪左	変動係数	係数	下限値
1/10Pm (kN)	31.2	31.9	27.8	30.3	2.19			
$1/10 \ \delta \ m \ (mm)$	1.11	1.20	1.18	1.16	0.05			
2/5Pm (kN)	124.7	127.8	111.2	121.2	8.83			
2/5δm (mm)	2.37	2.46	2.34	2.39	0.06			
2/3Pm (kN)	207.9	213	185.3	202.1	14.74	0.073	0.770	155.6
2/3δm (mm)	3.54	3.63	3.39	3.52	0.12			
9/10Pm (kN)	280.6	287.5	250.2	272.8	19.85			
9/10 δ m (mm)	5.27	5.04	4.64	4.98	0.32			
Pm (kN)	311.8	319.4	278	303.1	22.04			
δ m (mm)	7.81	8.60	6.41	7.61	1.11			
δu時荷重 (kN)	286.7	289.8	235.7	270.7	30.38			
δu (mm)	14.80	30.00	30.00	24.93	8.78			
降伏耐力 Py (kN)	201.5	199.9	187.1	196.2	7.89	0.040	0.874	171.4
δy (mm)	3.43	3.44	3.42	3.43	0.01			
終局耐力 Pu (kN)	288.5	298	260.4	282.3	19.55	0.069	0.783	221.0
初期剛性 K (kN/mm)	58.75	58.11	54.71	57.19	2.17			
降伏点変位 δv(mm)	4.91	5.13	4.76	4.93	0.19			
塑性率 μ=δu/δv	3.01	5.85	6.30	5.05	1.78			
構造特性係数 Ds	0.45	0.31	0.29	0.35	0.09			

表 4.4-2 試験体 P5715N の特性値

1/10Pm;0.1Pmax時の荷重

1/10 δ m;0.1Pmax時の変位

試験体 P5715N-1 写真 4.4-34 引張と積層接着面のせん断の複合破壊

写真 4.4-36 試験体 P5715N-1 座金のめり込み

試験体 P5715N 各試験体の包絡線 図 4.4-11

写真 4.4-35 試験体 P5715N-1 引張と積層接着面のせん断の複合破壊

写真 4.4-37 試験体 P5715N-1 座金のめり込み

写真 4.4-38 試験体 P5715N-1 積層接着面のせん断と引張の複合破壊

写真 4.4-41 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4-39 試験体 P5715N-1 積層接着面のせん断

写真 4.4·40 試験体 P5715N·1 積層接着面のせん断

写真 4.4-42 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4-43 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4-45 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4-47 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4·44 試験体 P5715N·2 積層接着面のせん断破壊

写真 4.4-46 試験体 P5715N-2 積層接着面のせん断破壊

写真 4.4-48 試験体 P5715N-3 積層接着面のせん断破壊

写真 4.4-49 試験体 P5715N-3 積層接着面のせん断破壊

写真 4.4-50 試験体 P5715N-3 積層接着面のせん断破壊

写真 4.4-51 試験体 P5715N-3 積層接着面のせん断破壊

写真 4.4-52 試験体 P5715N-3 積層接着面のせん断破壊

(3)試験体 P5721G10

試験体 P5721G10 の特性値を表 4.4-3 に、各試験体の荷重-変位曲線を図 4.4-12~ 図 4.4-17 に、包絡線の比較を図 4.4-18 に示す。破壊性状を写真 4.4-53~写真 4.4-77 に示す。破壊性状は、内層ラミナの引張と積層接着面のせん断による複合破壊となった。

→ 試験体記号		P5721G10) 進 / 戸 主	亦動反粉	ばらつき	5%
項目	1	2	3	4	5	6	平均恒	惊华佩左	: 変動係数	係数	下限值
1/10Pm (kN)	46.1	47.9	42.9	36.4	45.7	45.6	44.1	4.10			
$1/10 \ \delta \ m \ (mm)$	1.25	1.27	1.17	0.90	1.04	1.06	1.12	0.14			
2/5Pm (kN)	184.3	191.5	171.4	145.4	182.6	182.4	176.3	16.44	1		
2/5 δ m (mm)	3.06	3.28	3.19	2.49	3.19	2.89	3.02	0.29			
2/3Pm (kN)	307.2	319.2	285.7	242.4	304.4	304.0	293.8	27.38	0.093	0.783	230.0
2/3 δ m (mm)	4.85	5.29	5.02	4.01	5.71	4.70	4.93	0.57			
9/10Pm (kN)	414.8	430.9	385.7	327.2	410.9	410.3	396.6	36.97	1		
9/10 δ m (mm)	7.28	8.44	7.50	5.97	9.39	7.20	7.63	1.17			
Pm (kN)	460.9	478.8	428.6	363.5	456.6	455.9	440.7	41.11	1		
δ m (mm)	9.61	11.40	9.41	7.27	13.00	10.21	10.15	1.94			
δu時荷重 (kN)	460.9	478.8	428.6	363.5	456.6	452.7	440.2	40.89	1		
δ u (mm)	9.61	11.40	9.41	7.27	13.00	10.41	10.18	1.94			
降伏耐力 Py (kN)	285.0	297.4	293.2	222.6	252.0	275.7	271.0	28.68	0.106	0.752	203.7
δ y (mm)	4.52	4.92	5.15	3.68	4.50	4.25	4.50	0.52			
終局耐力 Pu (kN)	404.1	422.7	371.1	315.1	405.4	413.2	388.6	40.00	0.103	0.759	294.9
初期剛性 K (kN/mm)	63.05	60.45	56.93	60.49	56.00	64.87	60.30	3.42			
降伏点変位 δv(mm)	6.41	6.99	6.52	5.21	7.24	6.37	6.46	0.70	1		
塑性率 μ=δu/δv	1.50	1.63	1.44	1.40	1.80	1.63	1.57	0.15	1		
構造特性係数 Ds	0.71	0.67	0.73	0.75	0.62	0.67	0.69	0.05	1		

表 4.4-3 試験体 P5721G10 の特性値

1/10Pm;0.1Pmax時の荷重

1/10δm;0.1Pmax時の変位

注)最大荷重Pmは変位が30mmまでの荷重で最も大きいものとするが、荷重が大きく低下した場合はその時点とする。

図 4.4-16 試験体 P5721G10-5 P8 曲線

図 4.4-18 試験体 P5721G10 各試験体の包絡線

写真 4.4-53 試験体 P5721G10-1 積層接着面のせん断破壊

写真 4.4-55 試験体 P5721G10-1 座金付近の破壊性状

写真 4.4-57 試験体 P5721G10-2 引張と積層接着面のせん断の複合破壊

写真 4.4-54 試験体 P5721G10-1 積層接着面のせん断破壊

写真 4.4-56 試験体 P5721G10-1 積層接着面のせん断破壊

写真 4.4-58 試験体 P5721G10-2 引張と積層接着面のせん断の複合破壊

写真 4.4-59 試験体 P5721G10-2 引張と積層接着面のせん断の複合破壊

写真 4.4-61 試験体 P5721G10-3 引張と積層接着面のせん断の複合破壊

写真 4.4·63 試験体 P5721G10·3 引張と積層接着面のせん断の複合破壊

写真 4.4-60 試験体 P5721G10-2 座金部分のめり込み

写真 4.4-62 試験体 P5721G10-3 引張と積層接着面のせん断の複合破壊

写真 4.4-64 試験体 P5721G10-3 座金部分のめり込み

写真 4.4-65 試験体 P5721G10-4 引張と積層接着面のせん断の複合破壊

写真 4.4-67 試験体 P5721G10-4 引張と積層接着面のせん断の複合破壊

写真 4.4-69 試験体 P5721G10-5 引張と積層接着面のせん断の複合破壊

写真 4.4-66 試験体 P5721G10-4 引張と積層接着面のせん断の複合破壊

写真 4.4-68 試験体 P5721G10-4 座金部分のめり込み

写真 4.4-70 試験体 P5721G10-5 引張と積層接着面のせん断の複合破壊

写真 4.4-71 試験体 P5721G10-5 座金下部

写真 4.4-72 試験体 P5721G10-5 引張と積層接着面のせん断の複合破壊

写真 4.4-74 試験体 P5721G10-6 引張と積層接着面のせん断の複合破壊

写真 4.4-76 試験体 P5721G10-6 引張と積層接着面のせん断の複合破壊

写真 4.4-73 試験体 P5721G10-5 引張と積層接着面のせん断の複合破壊

写真 4.4-75 試験体 P5721G10-6 引張と積層接着面のせん断の複合破壊

写真 4.4-77 試験体 P5721G10-6 座金下部のめり込み
4.5 各試験体の比較

図 4.5-1 は文献 3)で実施されている 5 層 7 プライで座金を 80×210 mmとした試験体 P5721N 及び P5721G と、座金を 80×150 mmとした本事業における試験体 P5715N 及 び P5715N を比較したものである。座金の奥行き長さが長い P5721N、P5721G では、 幅はぎ接着のある P5721G の方が P5721N と比較して靱性及び最大耐力が共に高い傾 向にあり、座金の奥行き長さを 150 mmとした P5715G と P5715N は最大耐力と靱性に ほぼ差が無い結果となった。また 210 mm仕様より 150 mm仕様の方が靱性が高くなる傾 向にある。 P5721G 及び P5715G の一部の試験体は剛性が低くなるものがあったが (P5721G で 2 体、P5715G で 4 体)、剛性から見ると不利なはずの P5721N 及び P5715N ではこのような試験体は無かったことから、原因については理論的な説明が難しい。

図 4.5-2 は座金幅を 80 mmから 100 mmに代えた試験体 P5721G10 と同じく幅はぎ接 着ありの試験体 P5721G と P5715G と比較したものである。高い最大耐力が得られた 分靱性が下がっているが、CLT パネル告示に沿ってアンカーボルトで先行降伏する仕 様とすれば何の問題もない。また、この3体の試験体は全て座金面積(奥行き方向の 座金長さ、幅方向の長さ)が異なるにも関わらず、剛性があまり変わらない結果とな っており、課題を残した。

参考文献

- *1)木構造振興㈱:平成27年度林野庁委託事業 CLT等新たな製品・技術の開発・普及事業(CLT等接合 部データ事業) CLTパネルを用いたビス接合部検討事業報告書,平成28年3月
- *2) (財)日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計(2008年版),平成21年6月
- *3) CLT建築推進協議会: CLTを活用した建築事例集Ver.4(高知県におけるCLTの推進),平成29年7月

第5章 CLT 目地部の気密性能

5.1 試験の目的

一般に木材は適度な透湿抵抗を持っているうえ透気性も低く、室内側に CLT を現し に外断熱といった組合せでは結露防止に寄与すると考えられる。しかし、CLT のモデ ュール間には目地が数メートル間隔で存在し、CLT の裏面には接合金物が設置される 傾向にある。採用される空調システムにもよるが暖房時の室内は内外温度差により正 圧になるため、これらの隙間から漏気が生じた場合、多量の水蒸気が外皮内部に侵入 し低温側で結露や結氷を生じることが懸念される。数 cm² 程度の隙間からの漏気によ る水蒸気の搬送量は、透湿による透湿量の数十倍になるとされており、近年の断熱外 皮では連続した気密層を確保することにより、漏気による内部結露を防止している。 しかしながら、CLT 建築物では意匠上、目地部に対するシール処理などが避けられる 傾向にあり、目地部からの漏気防止の重要性が認識されていないと考えられる。そこ で、本節では CLT 目地部の隙間量を測定し、次節の CLT 壁体の防露性能を検討する うえで必要なデータを収集する。

5.2 試験体

試験体は CLT パネル工法(写真 5.2-1 参照)の目地部を再現した壁体モデルである。 本試験の目的は、施工誤差により CLT 間に幅 1mm 及び 2mm の隙間が生じた際の気 密性能の確認であるため、隙間幅 1mm 及び 2mm の 2 水準の試験体を測定対象とし た。なお,試験対象範囲は CLT 間の隙間から断熱材,透湿防水シート及び外壁材を貫 通する通気量であるため,対象外となる部位からの通気が生じないように気密テープ で処理を行った。表 5.2-1 に試験体の構成、図 5.2-1 に試験体図、写真 5.2-2~写真 5.2-5 に試験体作成時の写真を示す。

写真 5.2-1 CLT パネル工法 工事風景(事務所ビル)

耒	5	9-	1	試験体の構成	t
ΔX	υ.	. 4		ロハ 対火 レー・レノ 小井 ル	х

試験体	★# c2 ++ ≤	CLT間の隙間				
番号	1用,风,忉,杯	幅(mm)	長さ (mm)			
1	CLT:スギ、Mx60-5-5、t=150mm 断熱材:グラスウール32K 透湿防水シート	1	1000			
2	通気層 : 18mm 外壁材 : 窯業系サイディング t=16mm	2	1000			

写真 5.2-2 CLT 精度のチェック

写真 5.2-4 縦胴縁の取り付け

写真 5.2-5 試験体搬入

5.3 試験方法

本試験は、試験体を JISC9603 (換気扇)の附属書 I に記載される空気槽に取り付け 実施した。試験体前後の圧力差を段階的に変化させ、その際の通気量を測定した。通気 方向は CLT 側(屋内側)からおよびサイディング側(屋外側)からの 2 方向とした。 試験実施状況を写真 5.3-1~写真 5.3.5 に示す。

結果の算出方法を以下に示す。本試験において、各圧力差における通気量は、次式に より 20℃、1 気圧の標準状態にて換算した。

 $Q = q \cdot \frac{P_1 \cdot T_0}{P_0 \cdot T_1}$ $Q : 20^{\circ} C \cdot 1 \$ 気圧の空気密度における通気量(m³/h) q : 測定時の空気密度における通気量(m³/h) $P_0 : 1013 \$ (hPa) $P_1 : 測定時の気圧(hPa)$ $T_0 : 293 \$ (K) $T_1 : 測定時の空気温度(K)$ また本試験において圧力差と通気量の関係は次式によって回帰した。

 $Q = \alpha \cdot \Delta P^{1/n}$

⊿P:圧力差(Pa)

 α :通気率[(m³/h)/Pa^{1/n}]

n:隙間特性値(無次元)通常1~2

試験は建材試験センター中央試験所(埼玉県草加市稲荷 5-21-20)の動風圧試験装置を使用して実施した。

尚、試験体1では通気方向、屋外から屋内に対しては、仕上げ材を順次取り外した (写真 5.3-6~写真 5.3-8)、次の仕様についても気密性能試験を実施している。

① CLT+グラスウール 32K

CLT のみ

写真 5.3-1 圧力箱

写真 5.3-2 試験風景

写真 5.3.3 試験風景

写真 5.3-4 試験風景

写真 5.3-5 試験風景 図 5.2-1 に示す試験体

写真 5.3-6 試験体 CLT+グラスウール+透湿防水シート

写真 5.3-7 試験体 (CLT+グラスウール) 写真 5.3-8 試験体 (CLT のみ)

5.4 試験結果

試験体番号1の結果を表 5.4-1~5.4-2、圧力差と通気量の関係を図 5.4-1 に、試験体番号2の結果を表 5.4-3~5.4-4、圧力差と通気量の関係を図 5.4-2 に示す。

圧力差	通気量	通気率	隙間特性値
ΔP	\mathbf{Q}	α	n
(Pa)	(m^3/h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)
2.0	0.19		
4.0	0.30		
6.0	9.38	0.19	154
8.0	0.44	0.12	1.04
10.0	0.52		
12.0	0.61		
試験環境	温	」度:32℃ 気圧:	999 hPa

表 5.4-1 試験結果 試験体番号1 (屋内→屋外、目地幅 1mm)

表 5.4-2 試験結果 試験体番号1(屋外→屋内、目地幅1mm)

圧力差	通気量	通気率	隙間特性値		
ΔP	\mathbf{Q}	α	n		
(Pa)	(m^3/h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)		
2.0	0.17				
4.0	0.27				
6.0	0.36	0.096	1 35		
8.0	0.44	0.050	1.00		
10.0	0.52				
12.0	0.62				
試験環境	温	度:31.5℃ 気圧	: 999 hPa		

圧力差ΔP(Pa)図 5.4-1 圧力差と通気量の関係(試験体番号1)

表 5.4-3 試験結果 試験体番号 2 (屋内→屋外、目地幅 2mm)

圧力差	通気量	通気率	隙間特性値
ΔP	\mathbf{Q}	α	n
(Pa)	(m^3/h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)
2.0	0.22		
4.0	0.30		
6.0	0.39	0.14	1.67
8.0	0.47	0.14	1.07
10.0	0.55		
12.0	0.60		
試験環境	温月	度:32.1℃ 気圧:	1000 hPa

表 5.4-4 試験結果 試験体番号 2 (屋外→屋内、目地幅 2mm)

圧力差	通気量	通気率	隙間特性値	
ΔP	\mathbf{Q}	α	n	
(Pa)	(m^3/h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)	
2.0	0.13			
4.0	0.20		1 10	
6.0	0.28	0.064		
8.0	0.36	0.004	1.19	
10.0	0.44			
12.0	0.52			
試験環境	温。	度:32.1℃ 気圧	: 999 hPa	

図 5.4-2 圧力差と通気量の関係 試験体番号 2

通気量はサイディング側からの通気方向の値が低く、理由としては加圧方向によっ て透湿防水シートや断熱材の密着の程度や隙間量が変化したと推測される。また、 1~2mm 程度の隙間では通気量に大きな違いは見られなかった。

次に、試験体1の通気方向、屋外から屋内に対して、窯業系サイディングと透湿防 水シートを外した、CLT+グラスウール 32K での気密性能試験の結果を表 5.4-5 に示 す。

圧力差	通気量	通気率	隙間特性値
ΔP	Q	α	n
(Pa)	(m ³ /h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)
30.1	7.9		
40.3	9.9		
50.2	11.9		
59.9	13.8	0.54	0.00
70.0	15.6	0.34	2.20
80.3	17.3		
90.4	19.0		
100.4	20.5		
試験環境	温度:27℃	気圧:1006 hPa	

表 5.4-5 試験結果 試験体 1 (屋内→屋外、目地幅 1mm)

次に、通気方向、屋外から屋内に対して、窯業系サイディング、透湿防水シートおよ びグラスウール 32K を外した、CLT だけでの気密性能試験の結果を表 5.4-6 に示す。

圧力差	通気量	通気率	隙間特性値
ΔP	Q	α	n
(Pa)	(m ³ /h)	$(m^{3}/h) /Pa^{1/n}$	(無次元)
30.2	11.2		
40.0	14.0		
50.1	16.9		1.22
60.1	19.5	0.85	
69.7	21.7	0.83	1.02
79.9	23.9		
89.8	26.2		
100.0	28.2		
試験環境	温度:27℃	気圧:1006 hPa	

表 5.4-6 試験結果 試験体 1 (屋内→屋外、目地幅 1mm)

5.5 考察

試験結果から隙間量のデータが得られたが、これらの値が一般的な内装材の納まり と比べ、どの程度の性能を有するか比較する。

図 5.4・1 は、測定結果から得られた長さあたりの相当隙間面積について、既往研究に おける木造住宅の防湿・気密層の取合部と比較をしたものである。図 5.4・2 は、図 5.4・ 1 に対応した取合部の隙間形状である。既往文献 ¹⁾では、「合板突きつけ」もしくは「石 膏ボード突きつけ」程度の気密性が防露性能確保に必要と述べられている。隙間から の漏気による内部結露のリスクは、経路上の隙間量や断熱材外側に位置する部材の透 湿抵抗、外気温度などによって変化するが、平成 11 年省エネルギー基準解説書などに 掲載されているディテールでは、連続した防湿・気密層を形成することが必須となっ ており、このような隙間は許容されていないことが読み取れる。

今回測定された CLT 目地部の隙間は、0.5cm²/m 以上と「合板突きつけ」の 5 倍以 上の値であった。この隙間量による内部結露発生リスクは次章で検討するが、少なく とも省エネルギー・内部結露防止の観点から、CLT 目地部の隙間は何らかの措置が必 要であるレベルであると考えられる。

図 5.4-1 CLT 目地部と防湿・気密層取合部における隙間長さあたりの相当隙間面積 (*の数値は文献¹⁾からの引用)

右:CLT 目地部)

1) 齋藤宏昭,三浦尚志,桑沢保夫:木造断熱外壁の防湿・気密措置と防露性能に関する研究-繊維系 断熱材充填工法に対する要求性能-,日本建築学会環境系論文集 第688号,pp.461~470,2013.6

第6章 外壁の CLT 間目地の内部結露に対する影響の検討

6.1 試験の目的

前節において CLT 目地部の隙間量が示されたが、目地からの漏気が内部結露に及ぼ す影響は不明である。一般に、断熱壁体における隙間からの漏気は、材料実質部からの 透湿現象の数十倍もの水蒸気を搬送するとされており、パネルの製造・運搬の制約か ら、数メートル幅毎に目地が生じる CLT パネルでは、漏気による内部結露への影響確 認が不可欠である。そこで、本節では CLT 目地部を再現した試験体に対する結露実験 に加え、熱水分・空気移動を考慮したシミュレーション計算を行うことにより、目地部 からの漏気が内部結露に及ぼす影響を把握し、CLT パネルの仕様開発に寄与する知見 の整理を試みる。

6.2 試験体

試験体は、実際の施工を考慮し目地部に加え断熱層や通気層、目地裏面の金物等を 再現した5層5プライのCLT外壁である。試験体寸法は1980×1365mmであるが、 400mmスパンで目地部を3箇所再現し、それぞれの目地寸法や処理が異なってい る。試験体1の目地は幅1mm、2mm、1mm+CLTの屋外側に気密テープ(写真6.2-1)、試験体2は幅1mm、2mm、2mm+CLTの屋外側に構造用合板(写真6.2-2)の それぞれ3種類とした。試験体の構成を表6.2-1、目地の仕様を表6.2-2に,試験体 図を図6.2-1と図6.2-2に、試験体の製作風景を写真6.2-3に示す。

試験体	雄氏を	CLT間の隙間				
番号	1再几人约 147	幅(mm)	処理			
	CLT:スギ、Mx60-5-5、 t = 150mm	1	無処理			
1	断熱材:グラスウール32K	2	無処理			
1	透湿防水シート	1	気密テープ			
	通気層:18mm	1	無処理			
2	外壁材:窯業系サイディング t=16mm	2	無処理			
		2	構造用合板			

表 6.2-1 試験体の構成

表 6.2-2 目地の仕様

図 6.2-1-2 試験体1 試験体図 (屋外側 仕上げ)

図 6.2-1-3 試験体 1 試験体図 (CLT の配置および屋外側金物取り付け 図 6.2-1 試験体 1 試験体図

図 6.2-2-1 試験体 2 試験体図 (断面図)

図 6.2-2-2 試験体 2 試験体図(屋外側 仕上げ)

図 6.2-2-3 試験体 2 試験体図 (CLT の配置および屋外側金物取り付け)

写真 6.2-1 CLT 隙間部への 気密テープ貼り(試験体1)

写真 6.2-2 CLT 隙間部への 合板取り付け(試験体 2)

写真 6.2-3-1 CLT 搬入 (1 試験体 4 枚使用)

写真 6.2-3-2 CLT 組み立て (SP 金物ビス打ち)

写真 6.2-3-3 縦胴縁 (45mm×45mm) 取り付け

写真 6.2-3-4 断熱材取り付け (グラスウール 32K)

写真 6.2-3-5 透湿防水シート貼り

写真 6.2-3-6 通気胴縁取り付け

写真 6.2-3-7 窯業系サイディング貼り

写真 6.2-3-8 試験体完成

写真 6.2-3 試験体製作状況

写真 6.3-1-1 室内側

写真 6.3-1-2 屋外側

写真 6.3-1 試験体設置状況

6.3 試験方法

試験は、図 6.3-1 に示す低温室及び恒温恒湿室によって構成される環境試験室内の界壁 に、試験体を設置して行った。なお、低温室側を試験体の室外側、恒温恒湿室側を試験体 の室内側とした。試験体の設置状況を写真 6.3-1 に示す。

試験条件を表 6.3-1 に示す。試験は,条件 1 の前に,恒温恒湿室の相対湿度を低く保った状態で,所定の温度に安定させた後に相対湿度を 60%に変更して開始した。尚、国内の結露試験では圧力差をつけない形で行われているが、米国の空衛学会が発行する防露性能評価基準である ASHRAE160 に準じ、内外差圧を与えて実験をすることにした。

試験中は、各条件で温度及び相対湿度の測定を行った。温度及び相対湿度は、所定の位置に熱電対及び湿度センサーを設置(写真 6.3-2、写真 6.3-3) することにより測定した。 温度及び相対湿度の測定位置の概略を図 6.3-2 及び図 6.3-3 に示す。

試験終了後は,室外側から試験体を順次解体して、内部結露の状況を観察した。 実験は建材試験センター中央試験所(埼玉県草加市5丁目21番20号)で実施した。

図 6.3-1 試験装置の概要

表 6.3-1 試験条件

試験体	冬卅夕	低温室条件		恒温高温	显室条件	室内外の	計路口数	
番号	ᄴᄪᇻ	温度	相対湿度	温度	相対湿度	圧力差		
試験体1	条件1		成り行き			成り行き	7日	
	条件2	-4.7°C		20°C	60%	2P a	3日	
	条件3					5P a	4日	
	条件1			20°C		成り行き	7日	
試験体2	条件2	0°C	成り行き		60%	2P a	3日	
	条件3					5P a	4日	

《室外側》

図 6.3-2-1 断面図

図 6.3-2 湿度センサー、温度センサーの取り付け位置(試験体 1)

写真 6.3-2-1 湿度センサー

 査度センサー
 写真 6.3-2・2
 温度センサー

 写真 6.3-2
 センサー取り付け(試験体 1)

図 6.3-3 湿度センサー、温度センサーの取り付け位置(試験体 2)

写真 6.3·3·1 温度センサー取付 写真 6.3·3·2 温度センサー取付(屋外側) 写真 6.3·3 センサー取り付け(試験体 2)

6.4 試験結果

各条件終了前1時間の各部の温度及び相対湿度測定値の平均を表 6.4-1~表 6.4-4 に, 試験体各部の温度低下率の算出結果を表 6.4-5~表 6.4-8 に示す。なお,温度低下率は式 (1)で定義される。また,試験期間中の各部の温度及び相対湿度測定結果を図 6.4-1~図 6.4-8 に示す。図 6.4-1~図 6.4-8 では,主に室外側の測定結果に,短時間の急激な温度上 昇が断続的に見られるが,これは,低温室の除霜運転の影響によるものである。

条件 3、終了後の結露観察結果を表 6.4-9 に,結露観察状況を図 6.4-9 及び写真 6.4-1~ 写真 6.4-8 に示す

> $P_{x} = \frac{\theta_{H} - \theta_{x}}{\theta_{H} - \theta_{C}}$ (1) ここに、 P_{x} : 各部の温度低下率(-) θ_{x} : 各部の温度(\mathbb{C}) θ_{H} : 恒温恒湿室空気温度(\mathbb{C}) θ_{C} : 低温室空気温度(\mathbb{C})

	項目					結 果			
	測定位置		(1)	2	3	4	5	6	\bigcirc
	室内側雰囲気温度	(°C)				20.1			
1	室内側雰囲気相対湿度	(%)				32			
	室内外圧力差	(Pa)				0.8			
а	試験体室内側表面温度	(°C)	19.3	19.3	19.0	18.3	17.8	18.3	18.8
h	支持金物室内側温度	(°C)	8.4	9.3	7.9	6.1	5.5	6.8	-
D	隙間内の相対湿度	(%)	62	60	61	35	37	52	
с	CLT 室外側温度	(°C)	_	_	_		_	_	6.4
d	グラスウール室外側温 度	(°C)	_		_	_	_	_	0.9
e	透湿防水シート室外側 温度	(°C)	-1.0	-1.0	-1.3	-3.0	-3.3	-3.1	
f	通気層内空気温度	(°C)	-2.5	-2.3	-2.7	-4.0	-4.1	-4.0	
g	試験体室外側表面温度	(°C)	_	-3.0	_	_	-3.9	_	_
	室外側雰囲気温度	(°C)				-4.7			

表 6.4-1 温度及び相対湿度測定結果(試験開始前)

	項目	結 果								
測定位置			1)	2	3	4	5	6	\bigcirc	
	室内側雰囲気温度	(°C)				20.1				
\$ M	室内側雰囲気相対湿度	(%)				59				
	室内外圧力差	(Pa)				-0.5				
a	試験体室内側表面温度	(°C)	19.3	19.5	19.0	18.4	18.7	18.3	18.8	
1.	支持金物室内側温度	(°C)	8.6	11.1	7.9	6.3	7.3	6.7	—	
D	隙間内の相対湿度 ^{a)}	(%)	100	98	79	33	40	46	—	
с	CLT 室外側温度	(°C)	_	—	—	—	_	—	6.5	
d	グラスウール室外側温	(°C)	(°C)	_	_	_	_	_	_	0.9
u	度								0.7	
9	透湿防水シート室外側	(°C)	1.0	0.0	1.4	3 1	3 1	3.2	_	
C	温度	(0)	-1.0	0.0	-1.4	-5.1	-3.1	-3.2		
f	通気層内空気温度	(°C)	-2.4	-1.6	-2.7	-4.0	-4.2	-4.1	—	
g	試験体室外側表面温度	(°C)	-	-2.8	_	_	-4.0	—	_	
	室外側雰囲気温度 (℃) -4.8									
ì	注 ^{a)} 湿度センサーの出力値が100%を超えた場合は、測定結果を100%とした。									

表 6.4-2 温度及び相対湿度測定結果(試験条件 1:室内外圧力差成り行き)

表 6.4-3 温度及び相対湿度測定結果(試験条件 2:室内外圧力差 2Pa)

	項目					結 果				
	測定位置		1)	2	3	4	5	6	\bigcirc	
	室内側雰囲気温度	(°C)				20.3				
211	室内側雰囲気相対湿度	(%)				60				
	室内外圧力差	(Pa)		2.0						
a	試験体室内側表面温度	(°C)	19.7	19.8	19.4	19.2	19.5	18.7	19.2	
1.	支持金物室内側温度	(°C)	10.2	13.4	8.5	8.5	10.1	7.3	—	
D	隙間内の相対湿度 ^{a)}	(%)	100	94	87	80	92	64	_	
с	CLT 室外側温度	(°C)	_	_	_	_	_	_	7.1	
d	グラスウール室外側温 度	(°C)	_	_	_	_	_	_	1.3	
e	e 透湿防水シート室外側 温度 (℃) -0.1 2.2 -1.1 -2.6 -2.5 -2.9 -									
f	f 通気層内空気温度 (℃) -1.7 0.0 -2.6 -3.7 -3.5 -3.9 -									
g	g 試験体室外側表面温度 (℃)									
	室外側雰囲気温度	(°C)				-4.7				
ì	注 ^{a)} 湿度センサーの出力値が100%を超えた場合は、測定結果を100%とした。									

	項目					結 果					
	測定位置		1)	2	3	4	5	6	\bigcirc		
	室内側雰囲気温度	(°C)		20.2							
\$ M	室内側雰囲気相対湿度	(%)				59					
	室内外圧力差	(Pa)				5.1					
a	試験体室内側表面温度	(°C)	19.8	19.8	19.4	19.4	19.5	18.9	19.2		
1.	支持金物室内側温度	(°C)	11.8	14.3	9.0	9.6	11.0	7.9	—		
b	隙間内の相対湿度 ^{a)}	(%)	100	88	90	100	99	88	—		
с	CLT 室外側温度	(°C)	—	—	—	_	—	_	7.6		
d	グラスウール室外側温 度	(°C)	_	_	_	_	_	_	1.7		
e	e 透湿防水シート室外側 (℃) 1.5 3.3 -0.7 -2.0 -0.8 -2.4 -										
f	通気層内空気温度	(°C) -0.4 1.1 -2.3 -3.1 -1.6 -3.3 -							_		
g	試験体室外側表面温度	(°C)	—	-1.5	—	—	-2.3	—	—		
	室外側雰囲気温度	(°C)				-4.5					
ì	注 a) 湿度センサーの出力値が 100%を超えた場合は、測定結果を 100%とした。										

表 6.4-4 温度及び相対湿度測定結果(試験条件 3:室内外圧力差 5Pa)

表 6.4-5 温度低下率算出結果(試験開始前)

	項目		結 果							
	測定位置	1	2	3	4	5	6	\bigcirc		
a	試験体室内側表面	(-)	0.03	0.03	0.04	0.07	0.09	0.07	0.05	
b	支持金物室内侧	(-)	0.47	0.44	0.49	0.56	0.59	0.54	—	
c	CLT 室外側	(-)	_	_	—	_	_	_	0.55	
d	グラスウール室外側	(-)	—	—	—	—	-	—	0.77	
e	透湿防水シート室外側	(-)	0.85	0.85	0.86	0.93	0.94	0.94	_	
f	通気層内空気	(-)	0.91	0.90	0.92	0.97	0.98	0.97	—	
g	試験体室外側表面	(-)	_	0.93	_	_	0.97	_	_	

	х н										
	測定位置	1	2	3	4	5	6	\bigcirc			
a	試験体室内側表面	(-)	0.03	0.02	0.04	0.07	0.06	0.07	0.05		
b	支持金物室内侧	(-)	0.46	0.36	0.49	0.55	0.51	0.54	_		
с	CLT 室外側	(-)	_	-	_	_	_	—	0.55		
d	グラスウール室外側	(-)	—	-	—	—	—	—	0.77		
e	透湿防水シート室外側	(-)	0.85	0.81	0.86	0.93	0.93	0.94	_		
f	通気層内空気	(-)	0.90	0.87	0.92	0.97	0.98	0.97	_		
g	試験体室外側表面	(-)	_	0.92	_	_	0.97	_	_		

表 6.4-6 温度低下率算出結果(試験条件 1:室内外圧力差成り行き)

表 6.4-7 温度低下率算出結果(試験条件 2:室内外圧力差 2Pa)

	項目		結果							
	測定位置	\bigcirc	2	3	4	5	6	\bigcirc		
а	試験体室内側表面	(-)	0.02	0.02	0.04	0.04	0.03	0.06	0.04	
b	支持金物室内侧	(-)	0.40	0.28	0.47	0.47	0.41	0.52		
с	CLT 室外側	(-)			_	_	_	_	0.53	
d	グラスウール室外側	(-)			_	_	_	_	0.76	
e	透湿防水シート室外側	(-)	0.82	0.72	0.86	0.92	0.91	0.93	_	
f	通気層内空気	(-)	0.88	0.81	0.92	0.96	0.95	0.97	_	
g	試験体室外側表面	(-)	_	0.90	_	_	0.96	_		

表 6.4-8 温度低下率算出結果(試験条件 3:室内外圧力差 5Pa)

	項目		結果							
	測定位置	(1)	2	3	4	5	6	\bigcirc		
а	試験体室内側表面	(-)	0.02	0.02	0.03	0.03	0.03	0.05	0.04	
b	支持金物室内侧	(-)	0.34	0.24	0.45	0.43	0.37	0.50	_	
c	CLT 室外側	(-)	_	-	-	_	_	_	0.51	
d	グラスウール室外側	(-)	—	-	-	—	—	-	0.75	
e	透湿防水シート室外側	(-)	0.76	0.68	0.85	0.90	0.85	0.91	-	
f	通気層内空気	(-)	0.83	0.77	0.91	0.94	0.88	0.95	-	
g	試験体室外側表面	(-)	_	0.88	_	_	0.91	_	_	

→ b相対湿度
 → e温度
 → f温度
 → g温度

a温度 b温度

	a温度
	b温度
I	b相対湿度
	e温度
	f温度

図 6.4-6 温度及び相対湿度測定結果(測定位置⑥)

項目	結果		目地A周囲	目地B周囲	目地C周囲
観察箇所	仕上げ材	場所	1mm	2mm	1mm (処理)
	サイディング	裏面		0	
	(法)] によい」 し	屋外側		0	
法重改开告票	透弛的水シート	室内側		0	
	ガラフウール	屋外側	0	0	
	9729-10	室内側			
	CLT	屋外側	0	0	
【参考】	·			-	
グラスウールの	試験体解体	 	397.8	464.6	392.9
質量(g)	105℃乾燥	:後	375.3	392.3	387.0

表	6.4-9	結露観察結果	(試験体解体時)
~ ~	••• = •		

写真 6.4-1 結露観察状況 (目地 B サイディング室内側) 観察結果:流れ出し

写真 6.4-2 結露観察状況 (目地 B 透湿防水シート室外側) 観察結果:流れ出し

写真 6.4-3 結露観察状況
 (目地 B 透湿防水シート室内側)
 観察結果:流れ出し
 備考:透湿防水シートを下から持ち
 上げて折り返した状態。

写真 6.4-4 結露観察状況 (目地 A グラスウール室外側) 観察結果:流れ出し

写真 6.4-5 結露観察状況 (目地 B グラスウール室外側) 観察結果:流れ出し

写真 6.4-7 結露観察状況 (目地 A CLT 室外側) 観察結果:水たまり

写真 6.4-6 結露観察状況 (目地 B グラスウール室外側) 観察結果:流れ出し

写真 6.4-8 結露観察状況 (目地 B CLT 室外側) 観察結果:水たまり

(2) 試験体 2

各条件終了前1時間の各部の温度及び相対湿度測定値の平均を表 6.4-10~表 6.4-13 に,試験体各部の温度低下率の算出結果を表 6.4-14~表 6.4-17 に示す。また,試験期間 中の各部の温度及び相対湿度測定結果を図 6.4-10~図 6.4-18 に示す。図 6.4-10~図 6.4-18 では,主に室外側の測定結果に,短時間の急激な温度上昇が断続的に見られるが,こ れは,低温室の除霜運転の影響によるものである。

条件 3、終了後の試験体を解体後(写真 6.5-9~写真 6.5-12 参照)、結露観察結果を表 6.4-18 に,結露観察状況を図 6.4-19 及び写真 6.4-13~写真 6.4-14 に示す

	項目			結果								
	測定位置		1	2	3	4	5	6	\bigcirc	8		
	室内側雰囲気温度	(°C)		20.2								
ł	室内側雰囲気相対湿度	(%)		31								
	室内外圧力差	(Pa)		0.5								
а	試験体室内側表面温度	(°C)	19.2	19.5	19.4	18.7	18.1	18.8	19.2	—		
	合板室内側温度	(°C)	—	—	10.9	—	—	9.2	_	—		
b	支持金物室内側温度	(°C)	10.7	11.4	10.5	8.9	7.8	9.0	—	—		
	隙間内の相対湿度	(%)	70	60	65	40	41	58	—	_		
c	CLT 室外側温度	(°C)	—	—	—	—	—	—	9.6	—		
d	グラスウール室外側温 度	(°C)	_	_	_	_	_	_	4.9	_		
e	透湿防水シート室外側 温度	(°C)	2.9	3.1	3.0	1.4	1.2	1.3	_	2.0		
f	通気層内空気温度	(°C)	1.9	2.1	1.7	0.8	0.5	0.6	—	—		
g	試験体室外側表面温度	(°C)	_	1.4	_	_	0.7	_		_		
	室外側雰囲気温度	(°C)	0.0									

表 6.4-10 温度及び相対湿度測定結果(試験開始前)

	項目			結果								
	測定位置		1	2	3	4	5	6	\bigcirc	8		
	室内側雰囲気温度	(°C)		20.0								
1	室内側雰囲気相対湿度	(%)				6	0					
	室内外圧力差	(Pa)		-0.1								
а	試験体室内側表面温度	(°C)	19.1	19.4	19.3	18.6	17.9	18.7	19.0	_		
	合板室内側温度	(°C)	_	_	10.9	_	_	9.0	—			
b	支持金物室内側温度	(°C)	10.6	11.6	10.4	8.7	7.7	8.8	—			
	隙間内の相対湿度	(%)	88	94	73	35	37	54	—	_		
с	CLT 室外側温度	(°C)	_	_	_	_	_	—	9.6	_		
d	グラスウール室外側温 度	(°C)	_	_	_	_	_	_	4.8			
e	透湿防水シート室外側 温度	(°C)	2.8	3.2	2.9	1.4	1.2	1.3	_	2.0		
f	通気層内空気温度	(°C)	1.9	2.2	1.6	0.7	0.5	0.6	—	_		
g	試験体室外側表面温度	(°C)	—	1.3	_	—	0.6	_	_	_		
	室外側雰囲気温度	(°C)				0	.0					

表 6.4-11 温度及び相対湿度測定結果(試験条件 1:室内外圧力差成り行き)

表 6.4-12	温度及び相対湿度測定結果	(試験条件 2:	室内外圧力差 2Pa)
----------	--------------	----------	-------------

	項目									
	測定位置	1	2	3	4	5	6	\bigcirc	8	
	室内側雰囲気温度	(°C)				20).2			
<u>,</u>	室内側雰囲気相対湿度	(%)				5	9			
	室内外圧力差	(Pa)				2	.0			
а	試験体室内側表面温度	(°C)	19.3	19.5	19.5	18.9	18.3	18.9	19.3	-
	合板室内側温度	(°C)	_	_	11.5	_	_	9.4	_	_
b	支持金物室内側温度	(°C)	11.1	12.0	11.0	9.4	8.4	9.2	—	_
	隙間内の相対湿度	(%)	92	96	76	37	39	56	_	_
с	CLT 室外側温度	(°C)	—	—	—	—	—	—	10.2	—
d	グラスウール室外側温 度	(°C)	_	_	_	_	_	_	5.2	_
e	透湿防水シート室外側 温度	(°C)	3.0	3.4	3.3	1.6	1.8	1.5	_	2.4
f	通気層内空気温度	(°C)	2.2	2.5	1.8	1.0	1.3	0.8	_	—
g	試験体室外側表面温度	(°C)	_	1.5	_	_	1.1	_	_	_
	室外側雰囲気温度	0.0								

	項目	結果								
測定位置				2	3	4	5	6	\bigcirc	8
	室内側雰囲気温度	(°C)				20).1			
411	室内側雰囲気相対湿度	(%)				6	0			
	室内外圧力差	(Pa)				5	.1			
а	試験体室内側表面温度	(°C)	19.4	19.6	19.7	19.1	18.5	19.0	19.3	—
	合板室内側温度	(°C)	—	—	12.4	—	—	9.9	—	—
b	支持金物室内側温度	(°C)	11.6	12.4	11.7	10.1	9.1	9.6	—	—
	隙間内の相対湿度	(%)	96	96	80	70	40	60	—	—
с	CLT 室外側温度	(°C)	—	—	_	_	—	—	10.9	—
d	グラスウール室外側温 度	(°C)	_	_		_	_	_	5.7	_
e	透湿防水シート室外側 温度	(°C)	3.3	3.8	3.8	1.9	2.4	1.9	_	2.9
f	通気層内空気温度	(°C)	2.7	2.9	2.1	1.2	1.9	1.2	_	_
g	試験体室外側表面温度	(°C)	_	1.8			1.6		—	_
	室外側雰囲気温度	0.2								

表 6.4-13 温度及び相対湿度測定結果(試験条件 3:室内外圧力差 5Pa)

表 6.4-14 温度低下率算出結果 (試験開始前)

	項目	結果								
測定位置			1	2	3	4	5	6	\bigcirc	8
а	試験体室内側表面	(-)	0.05	0.03	0.04	0.07	0.10	0.07	0.05	—
h	合板室内側	(-)	—	—	0.46	_	—	0.54	_	_
b	支持金物室内侧	(-)	0.47	0.44	0.48	0.56	0.61	0.55	_	_
с	CLT 室外側	(-)	—	—	—	_	—	—	0.52	_
d	グラスウール室外側	(-)	_	_	_	_	_	_	0.76	_
e	透湿防水シート室外側	(-)	0.86	0.85	0.85	0.93	0.94	0.94	_	0.90
f	通気層内空気	(-)	0.91	0.90	0.92	0.96	0.98	0.97	_	_
g	試験体室外側表面	(-)	_	0.93	_	_	0.97	_	_	_

	項目	結果								
測定位置			1	2	3	4	5	6	\bigcirc	8
а	試験体室内側表面	(-)	0.04	0.03	0.04	0.07	0.11	0.07	0.05	_
h	合板室内側	(-)	_	_	0.46	_	_	0.55	_	_
D	支持金物室内側	(-)	0.47	0.42	0.48	0.57	0.62	0.56	_	—
c	CLT 室外側	(-)	_	_	_	_	_	_	0.52	_
d	グラスウール室外側	(-)	_	_	_	_	—	_	0.76	_
e	透湿防水シート室外側	(-)	0.86	0.84	0.86	0.93	0.94	0.94	_	0.90
f	通気層内空気	(-)	0.91	0.89	0.92	0.97	0.98	0.97	_	_
g	試験体室外側表面	(-)	_	0.94	_	_	0.97	_	_	_

表 6.4-15 温度低下率算出結果(試験条件 1:室内外圧力差成り行き)

表 6.4-16 温度低下率算出結果(試験条件 2:室内外圧力差 2Pa)

	項目	結果								
測定位置			\bigcirc	2	3	4	5	6	\bigcirc	8
a	試験体室内側表面	(-)	0.04	0.03	0.03	0.06	0.09	0.06	0.04	—
h	合板室内側	(-)		—	0.43	_	—	0.53	_	—
D	支持金物室内侧	(-)	0.45	0.41	0.46	0.53	0.58	0.54	_	_
с	CLT 室外側	(-)	_	_	_	_	—	_	0.50	_
d	グラスウール室外側	(-)		—	_	_	—	—	0.74	—
e	透湿防水シート室外側	(-)	0.85	0.83	0.84	0.92	0.91	0.93	_	0.88
f	通気層内空気	(-)	0.89	0.88	0.91	0.95	0.94	0.96	_	_
g	試験体室外側表面	(-)	_	0.93	_	_	0.95	_	_	_

表 6.4-17 温度低下率算出結果(試験条件 3:室内外圧力差 5Pa)

	項目	結果								
測定位置			1	2	3	4	5	6	$\overline{\mathcal{O}}$	8
a	試験体室内側表面	(-)	0.04	0.03	0.02	0.05	0.08	0.06	0.04	—
h	合板室内側	(-)	_	_	0.39			0.51	_	_
D	支持金物室内侧	(-)	0.43	0.39	0.42	0.50	0.55	0.53	_	_
c	CLT 室外側	(-)	_	_	_	_	_	_	0.46	—
d	グラスウール室外側	(-)	—	_	_	_	_	—	0.72	—
e	透湿防水シート室外側	(-)	0.84	0.82	0.82	0.91	0.89	0.91	—	0.86
f	通気層内空気	(-)	0.87	0.86	0.90	0.95	0.91	0.95	—	—
g	試験体室外側表面	(-)	_	0.92	_	_	0.93	_	_	_

図 6.4-11 温度及び相対湿度測定結果(測定位置②)

図 6.4-14 温度及び相対湿度測定結果(測定位置⑤)

図 6.4-15 温度及び相対湿度測定結果 (測定位置⑥)

図 6.4-16 温度及び相対湿度測定結果(測定位置⑦)

図 6.4-17 温度及び相対湿度測定結果 (測定位置⑧)

図 6.4-18 温度及び相対湿度測定結果(室内外雰囲気)

項目	結果		目地A周囲	目地B周囲	目地C周囲
観察箇所	仕上げ材	場所	1mm	2mm	2mm (処理)
	サイディング	裏面			
	(法)11によい しし	屋外側			
法重攻止位果	透弧的水シート	室内側			
和路光土江里	ガニュウ・ル	屋外側		0	
	クノスリール	室内側			
	CLT	屋外側		\bigcirc	

表 6.4-18 結露観察結果 (試験体解体時)

写真 6.4-9 試験終了後の試験体解体 サイディングの取り外し

写真 6.4-10 試験終了後の試験体解体 縦胴縁取り外し

写真 6.4-11 試験終了後の試験体解体 透過防湿シートの取り外し

写真 6.4-12 試験終了後の試験体解体 グラスウールの取り外し

写真 6.4-13 結露観察状況(目地 B グラスウール室内側) 観察結果:大水滴

写真 6.4-14 結露観察状況(目地 B CLT 室外側) 観察結果:吸水による変色 木材の含水率 20%超え

6.5 シミュレーション計算による検討

6.5.1 計算概要

(1) 基本式

基本式は2次元の熱・水分・空気に関する収支式を用いる。石膏ボード、木材など 透気率の小さい多孔質材に関しては空気移動を無視し、(1)、(2)式に示す液水移動ま で対応可能な含水率をポテンシャルとした熱水分同時移動方程式を適用する。

$$\rho_{l} \frac{\partial w}{\partial t} = \nabla D_{w} \nabla w + \nabla D_{T} \nabla T$$

$$c \rho \frac{\partial T}{\partial t} = \nabla \lambda \nabla T$$
(1)
(2)

移流成分の影響が顕著な繊維断熱材はハイグロスコピック域を対象とした熱湿気同 時移動方程式を適用し、移流項を加えた熱及び水分収支式(3)、(4)を用いた。なお、 移流項については隣接する上流側のみ影響するものとする。

$$(\Phi \rho_a + \kappa) V \frac{\partial X}{\partial t} = \sum C'_{ij} A_{ij} (X_j - X_i) + \sum Q_{ij} (X_j - X_i) + \nu \frac{\partial T}{\partial t} V$$
(3)

$$(c\rho + r_{\nu}\nu)V\frac{\partial T}{\partial t} = \sum C_{ij}A_{ij}(T_j - T_i) + \sum c_a Q_{ij}(T_j - T_i) + r_{\nu}\kappa\frac{\partial X}{\partial t}V$$
(4)

多孔質材内部の移流は、多孔質材内部の流れ場を層流と仮定し、透気率を用いた以下の式を用いて算出する。欠損部の境界面に生じる圧力については、床を基準面として求めた値を与えた。(5)、(6)式では流量と圧力差の線形関係を前提としているが、圧力差による透気率 kaの変化は無いものとして扱った。

$$Q_{ij} = k_a \cdot \Delta P_{ij} \cdot A_{ij} / \Delta x_{ij} \quad (\Lambda \mp j \pi)$$
(5)

(6)

$$Q_{ii} = k_a \cdot \Delta P_{ii} \cdot A_{ii} / \Delta y_{ii} \quad (\pm i = b = b)$$

各接点間の圧力差は、計算メッシュの中央を基準面とし、以下の式で算出する。 水平方向: $\Delta P_{ij} = P_j - P_i$ (7) 上部方向: $\Delta P_{ij} = P_j - P_i + g(\rho_j \Delta y_j + \rho_i \Delta y_i)/2$

下部方向: $\Delta P_{ij} = P_j - P_i - g(\rho_j \Delta y_j + \rho_i \Delta y_i)/2$ (9)

数値計算法は、前述した各式を後退差分近似により離散化し SOR 法によりに解く。 移流項は1次精度風上差分、その他は2次精度中心差分とした。熱と空気については 浮力の影響があるので連成させるが、水分に関しては独立して扱う。移流に関しては 連続の式により各セルにおける流量の総和が0になると仮定して、各接点圧力を逐次 求めた。なお、空間分割は直交格子の非等間隔のメッシュとし、水分蓄積が生じる木材 や合板表面については1mm 程度とした。

(2) 計算対象及び条件

計算対象は図 6.5.1-1 に示す垂直断面で、材料構成は結露試験で用いた試験体と同 じ仕様であるが、垂直断面に対する 2 次元解析であるため目地部の隙間は上下方向 4 箇所に設けた。材料表面の境界条件については総合熱伝達率を用い、物質伝達率は対 流熱伝達率から Lewis の相似則を用いて算出した。計算に用いた材料物性値を表 6.5.1-1 に、水分拡散係数及び平衡含水率を図 6.5.1-2 図 6.5.1-3 に示す。グラスウー ルの透気率は 1.16×10⁻⁴ (kg/[m·s·Pa]) とし、隙間からの漏気量は気密試験で得ら れた内外差圧に生じる流量相当と値した。

計算は表 6.5.1・2 に示す Case について行った。Case1 と Case2 は既に述べた実験を 再現した計算で、外気温度を・4.8℃とし、内外差圧が 2Pa、5Pa 相当の流量を与えた。 Case3~Case6 は、拡張アメダス気象データを外気側の境界条件として与えた解析で ある。

図 6.5.1-1 計算対象 (垂直断面)

++ *[熱伝導率	湿気伝導率	比熱	密度				
1/1 1/7	W/[m·K] kg/[m·s·Pa]	$J/[K \cdot kg]$	kg/m ³					
グラスウール 32K	0.045	$1.58 imes 10^{-10}$	698	16				
CLT	0.0952	$4.58 imes 10^{-12}$	1880	460				
サイディング	0.963	$1.30 imes 10^{-11}$	879	1095				

表 6.5.1-1 計算に使用した材料物性値

*防湿フィルムについては透湿抵抗([m²sPa]/kg)のみ表示した。

図 6.5.1-2 水分拡散係数

図 6.5.1-3 平衡含水率

表	6.5	.1-2	計算	Case
11	0.0	. 1 🚄	<u> </u>	Uase

Case	室内条件	外気条件	流量
Case1	温度 20℃、湿度 60%RH	-4.8°C	ΔP=2Pa 相当
Case2	温度 20℃、湿度 60%RH	-4.8°C	ΔP=5Pa 相当
Case3		仙台	ΔP=2Pa 相当
Case4	温度(10)式参照、湿度	仙台	ΔP=5Pa 相当
Case5	60%RH	東京	ΔP=2Pa 相当
Case6		東京	ΔP=5Pa 相当

 $\theta = 4.5\cos\{2\pi \cdot (day - 212)/365\} + 22.5$

(10)

day:1月1日からの日数

記号 添字 Q: 質量流量 (kg/s) *t*:時間(s) T: 温度 *Φ*:空隙率 (m³/m³) X: 絶対湿度 w: 体積含水率 (m³/m³) *ρ_a*: 空気密度 (kg/m³) T: 温度(K) w: 含水率 rv: 潜熱 (J/kg) X: 絶対湿度 (kg/kgDA) v: 水蒸気 A: 面積 (m²) D: 水分拡散係数 *I*: 液水 V: 体積 (m³) λ: 熱伝導率 (W/[m・K]) a: 空気 P: 圧力 (Pa) ka: 透気率 (kg/[m·s·Pa]) *s*:表面 *c*∶比熱 (J/[kg·K]) a: 通気率(m³/sPa) C: 熱コンダクタンス (W/[m²·K]) n: 隙間特性値(-) *x,y*:座標 (m) *ρ*:密度 (kg/m³) αA:長さあたりの相当隙間面積 (cm²/m) C: 湿気コンタ、クタンス (kg/[m²·s·kg/kgDA]) λ:湿気伝導率 (kg/[m·s·kg/kgDA]) κ:絶対湿度変化に対する含水率勾配(kg/[m³·kg/kgDA])

v:温度変化に対する含水率勾配(kg/[m³·K])

6.5.2 解析結果

(1) 定常状態を想定した解析 (Case1、Case2)

結露実験を再現した解析結果を図 6.5.2-1~図 6.5.2-3 に示す。なお、計算プログラ ムの特性上、内外温度差による上下の圧力分布を再現する計算となっており、壁体下 部(ポイント4、8)が負圧となり湿度が低下しているが、本解析では室内空気が壁内 へ流入する上部のみについて解説を行う。

図 6.5.2-1、図 6.5.2-2 は断熱材外気側と空気層の相対湿度及び、空気層の結露量の 時間変化である。Case1 では計算開始 120 時間後、Case2 では 24 時間後に空気層上 部 (ポイント 5、6) が 95%を超えており、露点に近付いていることが読み取れる。ポ イント 5 の結露量は Case1 は 4.5g/m²、Case2 が 110g/m²であり、圧力差により 20 倍 程度の差異が生じている。

図 6.5.2-3 は相対湿度と絶対湿度の断面分布であるが、目地付近の値が高く漏気によ り局所的に水蒸気が断熱層に浸入していることが読み取れる。また、Case2 の空気層 の高湿域(相対湿度分布で赤の部分)は Case1 に比べ広範囲に広がっており、内外差 圧の設定値により結露性状が大きく異なることが示されている。

(2) 気象データを用いた解析 (Case3~Case6)

仙台及び東京の気象データを用い、冬期(11/1~3/31)の解析を行った結果を図 7~ 図 10 に示す。

仙台の気象データを用いた解析では、傾向は Case1、2 と同様であり、Case3、Case4 では圧力差の違いによって結露量に大きな差が生じている。Case4 ではピーク時に結 露量が 180g/m²を超えており、結氷が生じる可能性が危惧される。

一方、東京の気象データを用いた Case5、Case6 の結露量は僅かであり、温暖地で の内部結露リスクは低いことが予想される。ただし、本解析は高さ 1.3m 程度の試験体 を想定しているため、階高によっては漏気量の積算値が増えることにより、空気層内 の水蒸気圧が高まる可能性があるので、更なる検討が必要と思われる。

図 6.5.2-1 断熱材外気側、通気層の相対湿度及び結露量(Case1:2Pa 相当) ※計算出力ポイントは図 1 を参照

図 6.5.2-2 断熱材外気側、通気層の相対湿度及び結露量(Case2:5Pa 相当) ※計算出力ポイントは図 1 を参照

Case1 相対湿度(%) Case1 絶対湿度(g/kgDA) Case2 相対湿度(%) Case2 絶対湿度(g/kgDA)

図 6.5.2-3 相対湿度及び絶対湿度の断面分布(左 Case1、右 Case2)

図 6.5.2-4 断熱材外気側、通気層の相対湿度及び結露量(Case3:仙台、2Pa相当) ※計算出力ポイントは図 1 を参照

図 6.5.2-5 断熱材外気側、通気層の相対湿度及び結露量(Case4:仙台、5Pa相当) ※計算出力ポイントは図 1 を参照

図 6.5.2-6 断熱材外気側、通気層の相対湿度及び結露量(Case5:東京、2Pa 相当) ※計算出力ポイントは図 1 を参照

図 6.5.2-7 断熱材外気側、通気層の相対湿度及び結露量(Case6:東京、5Pa 相当) ※計算出力ポイントは図 1 を参照

6.6 考察

6.6.1 CLT 目地からの漏気による結露メカニズムとリスク

ここでは、主に試験体1の結露実験結果から、CLT 目地からの漏気による結露発 生メカニズムとリスクについて述べる。

はじめに、漏気による影響が顕著な支持金物の温湿度に着目すると、「室内外温度 成り行き」の条件では、図 6.3-2 の試験体上部である①~③の温度が④~⑥の下部温 度に比べ高い結果となっている(表 6.4-2)。これは内外差圧が 0 となる中性帯が高 さ方向中央に存在し、これより上部で室内→屋外、下部で屋外→室内への移流が生じ ているためである。上下温度差は 2~4℃程度であるものの、①と②下部の相対湿度 は 50%以下、上部は 95%を越えており、漏気による目地上部の高湿化が確認でき る。

強制的に内外差圧を与えた表 6.4・3、表 6.4・4 の結果では、試験体下部である④、 ⑤の温湿度が表 6.4・2 に比べ上昇しており、上下ともに室内→屋外への移流が生じた ことが読み取れる。なお、図 6.4・5 において支持金物付近の相対湿度が加圧時に低下 している理由は、漏気量が増加することにより測定個所の温度と水蒸気量の上昇のバ ランスが変化し、露点温度を上回ったことによる。すなわち、漏気が一定量を超えた 場合、温度上昇が卓越し結露を防げるが、より低温となる外側の部位において多量の 結露が生じる。表 19 の目地 B の結露観察結果は、このようなメカニズムによってグ ラスウール室外側と透湿防水シート室内側へ多量の結露水が付着したと考えられる。 また、一般に透湿防水シートは透湿抵抗が低いためシート表面での結露は生じないと 考えられているが、CLT 目地の漏気による水蒸気移流量は透湿防水シートの排湿能力 を超えていたと推測される。

6.6.2 気密処理の必要性について

外気条件が・4.7℃で、目地が無処理である試験体1では、2週間程度の試験で流下す るほどの結露水が発生しており、外装材室内側にも結氷が見られた。一方、気密テープ 処理をした仕様では、相対湿度がおおよそ 80%に抑えられており、目地部の漏気防止 により一定の効果が得られている(表 6.4・2 ③)。また、これらは加圧時でも漏気を 防いでいるため、若干の上昇が検出されているものの湿度は無処理の結果に比べ低く、 表 6.4・9の観察結果でも結露水は確認されなかった。ゆえに、木部の腐朽防止や外装材 の劣化の観点から、寒冷地における気密処理は不可欠であると言える。

気密処理の方法については、試験体1の気密テープ、試験体2の構造用合板の2種 類を検討したが双方とも防露の効果が確認された。今回は2週間と比較的短期の実験 であったが、気密テープを用いる場合は接着面が長期的に剥がれないよう、面的に押 さえることが不可欠である。構造用合板による気密処理は、試験体2のように切り欠 きを設けなければ CLT の外面に凹凸が生じるため手間がかかるが、ビスや釘で打ち込 むため長期的な剥がれの懸念は低い。なお、双方とも上下端部には隙間が生じやすい ため、端部処理に関しては注意が必要で、実用上、納まりの検討が必要である。

6.6.3 地域性について

試験体 2 については、温暖地を想定し外気温度を 0℃とした結果で、表 6.4-10~表 6.4-13 に示すように内部結露は生じていない。また、図 6.5.2-6、図 6.5.2-7 のシミュ レーション計算でも、東京の外気条件では結露発生は散発的であり、無処理でも問題 ないように見える。今回の検討は高さ 1m 程度の試験体であるが、実物件を想定した 場合、室内から浸入した水蒸気がグラスウール内部を通り壁体上部に集中することが 予想される。この場合、目地部から浸入する水蒸気量は 2 階建てで実験の 5~6 倍、中 層の建物ならば 10 倍を超えることが予想されるため、漏気がある場合は本実験結果を もって結露が発生しないとは言い切れず、現時点では気密処理を行うことが安全と考 えられる。

第7章 接合方法別の環境性能への影響

7.1 試験の目的

CLT パネル工法では、CLT の接合に写真 7.1-1 や写真 7.1-2 のような金物が多数使用される。金物が屋外から室内にかけて跨ぐように使用されると、鋼材は熱橋をおこす可能性が高く、表面結露を発生させる可能性がある。そこで平成 26 年度には林野庁委託事業「CLT 等新製品・新技術利用促進事業」の内、耐火部材の開発で、2 階建ての共同住宅を想定して、外壁は 3 層 3 プライ (厚み 90mm)、床には 5 層 6 プライ (厚さ 180mm)の CLT を使って、図 7.1-1、図 7.1-2 に示す試験体を作成し、2 槽式の環境試験機を用いて、室内側の温度を 20℃、湿度 50%、屋外側は温度・4.7℃で設定し、1 階は床下断熱仕様として結露試験を実施し、床下から床上に伸びている金物には結露が見られること、室内側から屋外へ加工穴が貫通していなければ、結露の発生はないことを確認している。

法で 写真 7.1-2 CLT パ

写真 7.1-1 CLT パネル工法で 接合部に金物を使った事例

写真 7.1-2 CLT パネル工法の 引きボルト締め付け用の貫通穴

図 7.1-1 過去に実施した CLT パネル工法の結露試験 試験体図~その1

図 7.1-2 過去に実施した CLT パネル工法の結露試験 試験体図~その 2

しかし試験体数は、2体に限られたため、次のような点については明らかになっていない。

① 基礎断熱仕様の場合の接合金物の影響

② 床下断熱仕様で、床下一床上に伸びている金物の結露対策(図 7.1-1、図 7.1-2 で結露 が確認された試験結果への対応)

③ 写真 7.1-2 のように CLT が屋外から室内に貫通している場合の影響(より強度性能が 高い接合部が求められる 3 階建て以上の階数を有する建物への対応)

④ 壁一屋根、壁一床の気密テープ等による効果の検証

⑤ 上階がハングオーバーした場合の環境性能への影響

⑥ 設備用配管の熱橋対策 etc.

そこで本事業では、これらの課題に着目し、環境性能を低下させない対応策の提示を目 的に、2 槽式の環境試験機を使用して結露試験を実施する。

7.2 試験体

試験体は第6章の試験体と同様に、CLTの外部側にグラスウールを取り付ける外断熱仕様とし、透湿防水シートの外部側に18mmの通気層を設け、16mmの窯業系サイディングを仕上げ材とし、室内側のCLT表面は現しで見えることを想定した。使用するCLTは、樹種はスギ、規格はMx60-5-5、厚みは150mmとする。また接着剤は水性高分子イソシアネートで、生産工程では、各層のラミナの幅方向の接着は行っていない。試験体は計4体、試験体の構成を表7.2-1に示す。試験体図を図7.2-1~図7.2-13に示す。試験体の製作風景を写真7.2-1~写真7.2-12に示す。

また写真 7.2-13~写真 7.2-16 に試験体の設置状況の写真を、図 7.2-15~図 7.2-18 に CLT が貫通する部分、または外部一内部を跨ぐ金物の処理方法を示す。

表 7.2-1 試験体の構成

図 7.2-2 試験体図 室内側正面脚部(A-1 基礎断熱タイプ)

図 7.2-3 試験体図 断面図(A-1、A-2)

図 7.2-4 試験体図 屋外側構成(A-1、A-2)

(A-2 床下断熱タイプ)

図 7.2-8 試験体図 室内側正面図 (B-2 床下断熱タイプ)

図 7.2-9 試験体図 室内側正面脚部 (B-1 基礎断熱タイプ)

図 7.2-10 試験体図 断面図(B-1、B-2)

写真 7.2-1 基礎下の パッキン材敷き込み(B-1)

写真 7.2·2 接合金物 取付 (A-1)

写真 7.2-3 壁一屋根 の組み立て (A-1)

写真 7.2-4 壁一屋根 の組み立て (B-1)

写真 7.2-5 試験体組み立て 完了(B-2)

写真 7.2-6 試験体 のつり込み (A-1)

写真 7.2-7 試験体 据え付け(A-1)

写真 7.2-8 屋外側 グラスウール取り付け (A-1)

写真 7.2-9 屋外側 透湿防水シート貼り (A-1)

写真 7.2-10 屋外側 サイディング貼り (A-1)

写真 7.2-11 床下断熱 (A-2)

写真 7.2-12 室内側 試験体設置完了(B-2)

屋外側

写真 7.2-14 試験体設置 (B-1)

プラスターボードビス止め (室内側)

B-1 貫通穴の処理方法 図 7.2-16 試験体図

室内側

屋外側

写真 7.2-15 試験体設置 (B-2)

脚部箱型金物と床の納まり

脚部コの字箱型金物の断熱

図 7.2-17 試験体図 B-2 貫通穴の処理方法および床下の納まり

写真 7.2-16 試験体設置状況(A-2) 202

図 7.2-18 試験体図 A-2 貫通穴の処理方法および床下の納まり

7.3 試験方法

実験は高知県立森林技術センター(高知県香美市土佐山田大平 80)の2層式環境試験機 (図 7.3-1)を用い、室内側温湿度 20℃、50%、外気側温湿度-4.7℃、成り行き(図 7.3-1)に設定した。試験体各点の温度、湿度、結露センサー出力値を測定し、参考値として露 点温度、無次元温度、絶対温度を算出した。測定位置を図 7.3-2~図 7.3-5 に示す。

試験は 36 時間以上行い、36 時間経過後の各測定値の1時間の平均値を求めた。試験日 程を表 7.3-1 に示す。

図 7.3-1 試験装置概要

写真 7.3-1 試験体搬入風景

写真 7.3-1 試験体搬入風景

試験体番号	試験開始日	試験開始日
A-1	7月14日	7月19日
B –1	7月28日	7月31日
B –2	8月4日	8月9日
A-2	8月25日	8月30日

図 7.3-2 センサー取り付け位置(試験体 A-1)

図 7.3-3 センサー取り付け位置(試験体 B-1)

.

4-1

...**:** 3-1

7.4 試験結果

温度、湿度、結露センサーの測定結果を表 7.4-1、表 7.4-3、表 7.4-5、表 7.4-7 に,壁体内外温度差の推移を図 7.4-1、図 7.4-8、図 7.4-15、図 7.4-22、相対湿度の推移を図 7.4-2、図 7.4-9、図 7.4-16、図 7.4-23、金物内空気温度の推移を図 7.4-3、図 7.4-10、図 7.4-17、図 7.4-24、絶対湿度の推移を図 7.4-4、図 7.4-11、図 7.4-18、図 7.4-25、金物表面温度の推移を図 7.4-5、図 7.4-6、図 7.4-12、図 7.4-13、図 7.4-19、図 7.4-20、図 7.4-26、図 7.4-27 を実験に、順番に従って示す。

また試験終了後の観察結果を図 7.4-7、表 7.4-2、図 7.4-14、表 7.4-4、図 7.4-21、表 7.4-6、図 7.4-28、表 7.4-8 に示す。

(1) 試験体 A-1

	番号	測定値			参考值			
測定位置		温度 (℃)	相対湿度 (%)	結露 センサ出力 (V)	露点温度 (℃)	露点温度 算出箇所	無次元 温度	絶対湿度 (g/kgDA)
室内側空気	1-1	20.4	47.1		8.7			7.0
CLT室外側表面	2-1	8.5					0.51	
断熱材室外側表面	3-1	0.9					0.20	
室外側空気	4-1	- 4.0						
	6-1	17.6	55.5		8.6			6.9
拉合合物(空气)	6-2	14.9	61.5		7.6			6.5
按合並物(空氣)	6-3	16.2	58.1		8.0			6.6
	6-4	16.8	55.8		7.9			6.6
	7-1	17.4		0.01	8.6	接合金物 6-1	0.88	
	7-2	19.4		0.01	7.6	接合金物 6−2	0.96	
	7-3	14.9		0.02	8.0	接合金物 6−3	0.77	
接合金物(表面)	7-4	17.0		0.02	7.9	接合金物 6−4	0.86	
	7-5	18.1		0.01	8.7	室内空気 1-1	0.91	
	7-6	17.9		0.01	8.7	室内空気 1-1	0.90	
	7-8	16.2		0.02	8.7	室内空気 1-1	0.83	
和符(主王)	8-1			0.04				
配官(衣面) 	8-2			0.04				

表 7.4-1 温度、湿度、結露センサーの測定結果(A-1)

:「」の値は、湿度センサーの測定範囲(温度 0~50 ℃、湿度 5~90 %)外の値、も しくはそれを参考に算出した値。

*:結露センサーは、出力 1.0 V以上で結露発生と判断。

図 7.4-6 金物表面湿度の推移 (A-1)

図 7.4-7 試験終了後の観察結果 (A-1)

(2) 試験体 B-1

		測定値			参考值			
測定位置	番号	温度 (℃)	相対湿度 (%)	結露 センサ出力 (V)	露点温度 (℃)	露点温度 算出箇所	無次元 温度	絶対湿度 (g/kgDA)
安中側交生	1-1	19.4	47.5		8.0			6.6
主内側上丸	1-2	19.5	46.5		7.8			6.5
이 그 중 서 御 主 퓺	2-1	5.4					0.44	
GLT主外侧衣面	2-2	7.3					0.50	
新教社会が創まる	3-1	- 1.5					0.16	
剧怒的主作例衣面	3-2	- 0.4					0.18	
安风侧灾气	4-1	- 5.4						
重が側上以	4-2	- 4.9						
	6-1	14.5	64.9		8.0			6.6
	6-2	13.4	71.4		8.3			6.8
接合金物(空気)	6-3	17.0	54.2		7.7			6.5
	6-4	16.9	57.8		8.5			6.9
	6-5	17.5	57.5		9.0			7.1
	7-1	13.9		0.01	8.0	接合金物 6-1	0.78	
	7-2	12.7		0.04	8.3	接合金物 6−2	0.73	
	7-3	16.7		0.02	7.7	接合金物 6−3	0.88	
按合令物(主面)	7-4	16.1		0.02	8.5	接合金物 6−4	0.86	
按口並110(衣圓)	7-5	15.5		0.01	9.0	接合金物 6−5	0.84	
	7-6	17.0		0.01	8.0	室内空気 1-1	0.90	
	7-7	16.2		0.01	7.8	室内空気 1-2	0.87	
	7-9	17.1		0.01	7.8	室内空気 1-2	0.90	
オーバーハング部室内側表面	8-1	18.3					0.95	
オーバーハング部室外側表面	9-1	- 4.5					0.02	

表 7.4-3 温度、湿度、結露センサーの測定結果(B-1)

:「」の値は、湿度センサーの測定範囲(温度 0~50 ℃、湿度 5~90 %)外の値、もしくはそれを参考に算出した値。

*:結露センサーは、出力 1.0 V以上で結露発生と判断。

図 7.4-10 金物内空気温度の推移 (B-1)

図 7.4-14 試験終了後の観察結果 (B-1)

現象3

表 7.4-4 試験終了後の観察結果 (B-1)

現象4

現象5

(3) 試験体 B-2

		測定値			参考值			
測定位置	番号	温度 (℃)	相対湿度 (%)	結露 センサ出力 (V)	露点温度 (℃)	露点温度 算出箇所	無次元 温度	絶対湿度 (g/kgDA)
安中側空气	1-1	20.3	51.3		9.9			7.6
至	1-2	20.6	49.6		9.7			7.5
이 그는 너 때 후 그	2-1	6.3					0.45	
	2-2	5.9					0.41	
断熱材索从側手面	3-1	- 1.2					0.15	
剧怒何至外则衣面	3-2	- 0.5					0.16	
安风御空气	4-1	- 5.1						
	4-2	- 4.5						
床下空気	5	1.7	60.8		- 5.1			2.6
	6-1	12.3	75.5		8.1			6.7
	6-2	13.8	77.6		10.0			7.6
接合金物(空気)	6-3	17.3	59.5		9.3			7.3
	6-4	7.0	104.0 *		7.0 *			6.2 *
	6-5	16.2	64.8		9.6			7.4
	7-1	12.9		0.01	8.1	接合金物 6-1	0.71	
	7-2	12.6		0.12	10.0	接合金物 6-2	0.70	
	7-3	17.4		0.02	9.3	接合金物 6−3	0.87	
	7-4	6.3		1.99	7.0 *	接合金物 6-4	0.43	
接合金物(表面)	7-5	10.9		0.02	9.6	接合金物 6-5	0.61	
	7-6	17.2		0.01	9.9	室内空気 1-1	0.88	
	7-7			1.88				
	7-8			1.96				
	7-9	15.2		0.02	9.7	室内空気 1-2	0.78	
オーバーハング部室内側表面	8-1	18.7					0.94	
オーバーハング部室外側表面	9-1	- 3.6					0.03	

表 7.4-5 温度、湿度、結露センサーの測定結果(B-2)

:「」の値は、湿度センサーの測定範囲(温度 0~50 ℃、湿度 5~90 %)外の値、も しくはそれを参考に算出した値。

*:結露センサーは、出力 1.0 V 以上で結露発生と判断。

図 7.4-17 金物内空気温度の推移 (B-2)

図 7.4-21 試験終了後の観察結果 (B-2) 表 7.4-6 試験終了後の観察結果 (B-2)

(4) 試験体 A-2

		測定値			参考值			
測定位置	番号	温度 (℃)	相対湿度 (%)	結露 センサ出力 (V)	露点温度 (℃)	露点温度 算出箇所	無次元 温度	絶対湿度 (g/kgDA)
室内側空気	1-1	20.4	43.7		7.6			6.5
CLT室外側表面	2-1	9.3					0.56	
断熱材室外側表面	3-1	2.2					0.27	
室外側空気	4-1	- 4.7						
床下空気	5	- 0.2	43.2 *		-11.2 *			1.6 *
	6-1	18.7	47.9		7.5			6.4
按合全物(空气)	6-2	18.7	51.4		8.5			6.9
按吉金物(空丸)	6-3	17.4	53.3		7.8			6.6
	6-4	- 0.8	41.5 *		-12.3 *			1.5 *
接合金物(表面)	7-1	18.1		0.01	7.5	接合金物 6-1	0.91	
	7-2	17.2		0.01	8.5	接合金物 6-2	0.87	
	7-3	15.4		0.01	7.8	接合金物 6-3	0.80	
	7-4	- 0.6		0.01	-12.3 *	接合金物 6-4	0.16	
	7-5	19.1		0.01	7.6	室内空気 1-1	0.95	
	7-6	3.4		0.01	-11.2 *	床下空気 5	0.32	
	7-7	0.6		0.01	-11.2 *	床下空気 5	0.21	
	7-8	- 2.3		0.01	-11.2 *	床下空気 5	0.10	
	8-1			0.01				
111官(衣囬)	8-2			0.08				

表 7.4-7 温度、湿度、結露センサーの測定結果(A-2)

:「」の値は、湿度センサーの測定範囲(温度 0~50 ℃、湿度 5~90 %)外の値、もしくはそれを参考に算出した値。

*:結露センサーは、出力 1.0 V以上で結露発生と判断。

図 7.4-24 金物内空気温度の推移 (A-2)

図 7.4-28 試験終了後の観察結果 (A-2)

表 7.4-8 試験終了後の観察結果 (A-2)

7.5 考察

接合位置に生じる CLT 貫通穴に対し、各試験体で室内側から屋外側への空気の移動を 遮断する方法として施した方法と、その効果を表 7.5・1 にまとめる。試験体 A1 で採用し た室内側での気密テープ貼りは、屋外側で結露の発生は見られなかったが、試験体 B1 で 採用したプラスターボード貼りとスギ板 25mm および構造用合板 9mm のビス打ちについ ては、断熱材の屋外側や開口部の上部で結露している現象が見られた。プラスターボード については、透湿抵抗が低いことが原因と考えられる。スギ板 25mm および構造用合板 9mm については防湿に必要な透湿抵抗は保持いているが、ビス打ちでは CLT と使用した 面材間の隙間から湿気の生じたことが理由として考えられる。特に床と壁、あるいは屋根 と壁の入隅部については、隙間の密閉はより難しくなるため、これら取合いの気密を担保 できる施工方法を考案する必要がある。また A2 試験体については、壁の最上部で、屋根 の CLT の直下に平行に取り付けられた屋外側の胴縁が濡れている状況が見られた。ただ し試験体 B1 および試験体 B2 と比較すると濡れの状態が少量であったこと、貫通穴が開 いていない上部でも濡れが見られたことから、接合位置の貫通穴以外が要因であったと推 察される。尚、平成 26 年に実施した図 7.1・1 および図 7.1・2 では接合部は、ラミナを 1 枚、 室内側に残すことで結露を免れていた。

試験体番号	接合位置のCLT貫通穴	接合部貫通穴の処理方法		
A 1		気密テープ貼り	0	
B 1		プラスターボード ビス打ち	×	
B 2		スギ板25mm ビス打ち	×	
02		構造用合板9mm ビス打ち	×	
		スギ板25mm 接着剤併用ビス打ち	Δ	
A 2	A CONTRACTOR OF	構造用合板9mm 接着剤併用ビス打ち	Δ	
		気密テープ貼り	Δ	

表 7.5-1 接合位置の CLT 貫通穴の処理方法と効果

試験体 A2 で結露が発生した要因として、屋根と壁の CLT 間の隙間や、写真 7.5・1 のような室内一屋外間を跨ぐような接合金物を使用した場合に生じる、接合金物と CLT の隙間が考えられる。前者については、室内側に気密テープを貼るほか、廻り縁を打つ方法もあるが、廻り縁を打つときは密封性を高めるために、接着剤やパッキン等の気密補助材を 併用することが望まれ、屋外側の入隅部の胴縁の釘打ちだけではこの密封性の確保は困難 と考えられる。試験体 A1 で屋根に使った CLT の上面で結氷が見られたが、これは屋根と 壁の隙間から侵入した室内の空気が、ボルト穴を通じて CLT の上側に移動し、低温となる 屋外側スラブ面で露点に達して生じた現象と考えられる(図 7.5・1、写真 7.5・2、写真 7.5・

3)

写真 7.5-1 CLT を跨ぐ接合金物 写真 7.5-2 試験体 A1 の屋外側の屋根面木口

図 7.5-1 試験体 A1 で結氷した時の空気の流れ

写真 7.5-3 屋根上の座彫り

床下断熱とする場合は、試験体 B2 および試験体 A2 の結果から、床と壁間の気密性の 確保と、接合金物が床下から床上に貫けないことが求められる。試験体 B2 では、試験体 幅の約 2/3 の長さで気密テープ処理をしたが、残り 1/3 は気密処理をしなかった結果、図 7.4-16、図 7.4-20、表 7.4-6 から多数の床下の接合金物が結露する状況となった。ただし 図 7.2-17 のように室内一屋外に跨ぐコの字の金物に対し、室内の露出部以外は、発泡系の 断熱材を吹き付けることで、結露を免れている。一方、全長に気密テープを貼った試験体 A2 (写真 7.5-4) では、表面温度が 0℃を下回っていたにも関わらず床下の金物に結露は見 られなかった。また試験体 A2 では、室内に現れた金物表面で熱橋で結露すると心配され たが、室内側の空気に触れないようにプラスターボードで接着剤を使って被覆(写真 7.5-5) したところ、結露は見られなかった。ただし金物の温度は 4℃まで下がっていることか ら、透湿抵抗の高い部材で被覆することが望まれる。

写真 7.5-4 1 階床一壁の 気密テープ貼り

写真 7.5-5 接合金物の プラスターボードによる被覆

基礎断熱とする場合は、コンクリート基礎と CLT 間の隙間処理方法が課題になる。今回 の実験では写真 7.2-1、写真 7.2-2 に示す既成の基礎断熱用気密土台パッキンを活用した が、試験体 A1、試験体 B1 の結果から気密性の確保はできていたとみられる。ただし使用 するにあたっては構造面や耐久性についても検討・確認していく必要がある。

設備配管の処理は試験体 A1 および試験体 A2 から、配管が熱橋とならないための断熱 材による保護と、室内--屋外間の空気を遮断するための気密対策が重要になる。試験体 A1 では、屋外の配管を-4.7℃の温度下に暴露した結果、配管と CLT 間で結露が発生した。 一方、試験体2では屋外側の配管を断熱材で保護し、室内側は 20℃の温度下で暴露して実 験を行った。塩ビ管については結露が発生していないが、コルゲート管の周辺には若干で あるが結露が見られた。これは配管と CLT 間にロックウールを詰めているが、気密性確保 にはあまり寄与しないこと、室内と外壁に貼られたグラスウールの室内側では温度差が 10℃程度あること、塩ビ管と比較するとコルゲート管は熱伝導率が高いことが原因として あげられる。この部分の気密性の確保が確実でなければ、透湿防水シートの室内側での結 露にも繋がることから、室内での確実な気密・防湿措置の必要があろう。

試験体 A の図 7.4-1 と図 7.4-22、試験体 B の図 7.4-8 と図 7.4-15 の温度変化はそれぞ れ同じ推移を示しているが、試験体 A の CLT の屋外側の温度は、試験体 B の CLT の屋外 側温度より若干高い温度となっており、第6章の目地を設けた試験体 1 の温度の推移であ る図 6.4-7 と比較すると、試験体 B の温度の推移が似たような状態になっている。しかし 屋外と室内の温度および断熱材の屋外側の温度の推移は、すべて同じような動きになって いることから、試験装置の違いによる影響ではなく、試験体の形状等の違いが影響したも のと考えられる。

また試験体 B では床がオーバーハングした時を想定している。床に使われた CLT の下 面は仕上げ材として見えることを想定しているため、屋外側に突き出た床下にはグラスウ ール等の断熱材が貼られていない状態となっている。しかし図 7.4-8 および図 7.4-15 の測 定点 8-1 および 9-1 から CLT 厚さ 150mm で、断熱性能がある程度確保できている状況が 伺える。一方、B2 および A2 の床下の測定点 5 の温度は、屋外側の設定温度よりやや高い 温度となっている。これは床下の囲い(写真 7.4-15 参照)に使用した断熱材の性能が壁の 断熱性能と比較すると低かったことが原因と思われる。従って基礎断熱または床下断熱に 使用する断熱材の選択に は、壁の断熱性能とのバランスが重要になる。

225

8章 CLTを下地とした屋根・バルコニーの事故的雨掛かりの影響

8.1 試験の目的

中・大規模木造建築物は、住宅と比較すると建て方開始から雨仕舞が終了するまでの期間が長くなるため、CLT が雨水に晒される可能性が高い。屋根については、次工程の防水前に雨水に晒された状態で防水工事を進めると、木材に含まれた水分の影響で、防水層の浮きや CLT の腐朽の可能性を否定できない。そこで CLT を浸水させた後、通気溝付断熱材・塗膜防水・外装材などを施工し、直接日光を受ける条件での屋外の曝露試験を実施し、不具合が生じないかの判定と対応策の効果を確認する。

8.2 実験方法

8.2.1 試験実施日および試験場所

実施日 2017 年 8 月 1 日~9 月 20 日頃(試験継続中)

試験場所 田島ルーフィング株式会社 石岡工場内(茨城県石岡市柏原 7-6)

8.2.2 実験手順

本実験では実際の現場において野地およびパラペットが組まれた状態で降雨が 12 時間続くことを想定する。なお、今回は試験場所の作業条件の問題から水張りを2回 に分けて行った。

まず、CLTにパラペットを取りつけた状態でCLT外周に合板で堰を作り水位20mm で水を溜める。6時間維持した後、水を排出し、さらに翌日、同条件で水を6時間溜 め、その後に水を排出する。翌日の18時間後、防水層の施工を開始し、2回目の水の 排出から24時間以内にすべての作業を完了させる。試験期間中、試験体内の温湿度 や含水率を連続測定する。また、含水量測定用試料としてあらかじめ着脱できるよう にしておいたCLTの一部を定期的に取り外し質量測定する。

8.2.3 試験体

試験体構成を図 8.2.3-1 および図 8.2.3-2 に示す。CLT(A) と CLT(B) は目地部 のスプラインと裏面に通した垂木で固定し、目地幅は 1mm とする(写真 8.2.3-1)。 パラペットはツーバイフォー材と針葉樹合板(厚さ 9mm)で造り CLT に固定する。 また、水張りを行った際にパラペット裏面側へ水が抜けないようにするため、パラペ ット裏面下端から CLT 側面にかけて防水テープを貼る(写真 8.2.3-2)。ここまでの試 験体全景を写真 8.2.3-3 に示す。通気溝付勾配断熱材(厚さ 35mm~50mm、溝断面 5mm×5mm、溝ピッチ 34mm)をパラペット側が水上となるように敷設し(写真 8.2.3-4)、防水下地合板(厚さ 9mm)をビスで留め付ける。通気溝付勾配断熱材の裏 面を写真 8.2.3-5、断面を写真 8.2.3-6 に示す。パラペット立上りと一般部に緩衝シー トを貼り、脱気筒部には Ф50mm の貫通孔を CLT 表面まで開ける(写真 8.2.3-7)。 その後、ウレタン防水材を一般部・立上り・パラペット天板に塗布し、トップコート で仕上げる(写真 8.2.3-8)。

試験体の外周を断熱材と鋼板カバーで覆い、雨水が試験体内に浸入しないよう水切 り板金などで納める。この納まりについては報告書末尾の図面を参照とする。

図 8.2.3-2 試験体構成 防水層

写真 8.2.3-1 CLT 目地

写真 8.2.3-3 防水前の試験体全景

写真 8.2.3-5 通気溝付勾配断熱材裏面

写真 8.2.3-7 脱気筒貫通孔

写真 8.2.3-2 パラペット裏面

写真 8.2.3-4 通気溝付勾配断熱材敷設

写真 8.2.3-6 通気溝付勾配断熱材断面

写真 8.2.3-8 防水施工完了後の試験体全景

8.2.4 測定条件

測定は温度・湿度・含水率・結露の有無の4種類とし、各測定点の位置を図8.2.4-1、 図8.2.4-2、図8.2.4-3、表8.2.4-1に示す。また、防水層表面・防水下地合板裏面・ CLT表面の測定は水張り終了後、防水層を施工する中で順次開始となる。

図 8.2.4-2 CLT 目地部(J1・J2)

表 8.2.4-1 各測定の位置

	温度	湿度	含水率	結露の有無
防水層表面	A1 • A2			
防水下地合板裏面	$A1 \cdot A2 \cdot B1 \cdot B2$			
CLT 表面	$A1 \cdot A2 \cdot B1 \cdot B2$	$A1 \cdot A2 \cdot B1 \cdot B2$	$A1 \cdot A2 \cdot B1 \cdot B2$	
CLT 裏面	A1 • A2			
CLT 側面			$S1 \cdot S2$	
パラペット内部	P1 · P2	P1 · P2		
パラペット天板裏面	P1		P1 · P2	
CLT 目地間			$J1 \cdot J2$	

8.2.5 測定装置

- (1) 温湿度測定
- データロガー: LR8400メモリハイロガー(日置電気)
- 温度センサー : T 熱電対 Φ 0.32 (写真 8.2.5-1)
- 湿度センサー: Z200湿度センサー(日置電気)(写真 8.2.5-2)
- (2) 結露測定
- データロガー: LR8400メモリハイロガー(日置電気)
- 結露測定器 : KNS-KH (コーナー札幌)
- 結露センサー: NH-4000 (コーナー札幌) (写真 8.2.5-3)
- (3) 含水率連続測定
- データロガー: KNS-LOG 木材含水率ロガー (コーナー札幌)
- センサー① : 含水率センサー (コーナー札幌) (写真 8.2.5-4)
- センサー②※: 含水率センサー(田島ルーフィング)(写真 8.2.5-5)
- ※センサー長さを合板の厚み以下とするため、防水下地合板の測定にのみ使用
- (4) 木材表面含水率測定
- 高周波容量式木材水分計(ケツト科学研究所)

防水施工開始直前の CLT 表面およびパラペット表面の含水率測定にのみ使用

写真 8.2.5-1 T 熱電対

写真 8.2.5-2 湿度センサー

写真 8.2.5-3 結露センサー

写真 8.2.5-4 含水率センサー①

写真 8.2.5-5 含水率センサー②

8.3 実験結果

8.3.1 共通事項

グラフの横軸は経過日数としており、水張りを開始した時点を0日としている。また、2回目の水張り終了時は1.2日、防水施工開始時は2.0日である。そのため、CLT 表面や防水下地合板裏面などの測定結果は横軸に対して時間差が生じる。

本実験では含水率連続測定に電気抵抗式の測定器を使用したが、木材は高温になる と電気抵抗が小さくなり、日射により試験体の温度が上昇すると含水率として得られ る数値は高くなる特徴がある。したがって、含水率のグラフ中に現れるピークは測定 器の特性によるものであり、議論の対象としない。

土浦 2017年8月 (日ごとの値) 気温 土浦 2017年9月 (日ごとの値) 気温 τ⁴⁰ C 35 35 30 30 25 20 20 15 15 10

試験期間中の気温を図 8.3.1-1、降水量を図 8.3.1-2 に示す。

図 8.3.1-1 試験時の気温(引用元:気象庁 HP)

図 8.3.1-2 試験時の降水量(引用元:気象庁 HP)

8.3.2 CLT 表面

防水施工開始直前の CLT 表面の含水率を図 8.3.2-1 に示す。

図 8.3.2-1 防水施工開始直前の CLT 表面含水率

防水施工後、連続測定した CLT 表面の含水率を図 8.3.2-2、温湿度を図 8.3.2-3 に示す。

8.3.3 パラペット

防水施工開始直前のパラペット表面の含水率を図 8.3.3-1 に示す。

図 8.3.3-1 防水施工開始直前のパラペット表面含水率

パラペット天板裏の含水率を図 8.3.3-2、パラペット内部の温湿度を図 8.3.3-3 に示す。

8.3.4 防水下地合板裹面

防水下地合板裏面の含水率を図 8.3.4-1、温湿度を図 8.3.4-2 に示す。また、結露は 発生しなかった。

図 8.3.4-1 防水下地合板裏面の含水率

図 8.3.4-2 防水下地合板裏面の温湿度

8.3.5 CLT 目地

CLT 目地の含水率を図 8.3.5-1 に示す。

8.3.6 その他の測定点

CLT 側面の含水率を図 8.3.6-1、脱気筒内部の温湿度を図 8.3.6-2、防水層表面の温度を図 8.3.6-3、CLT 裏面の温度を図 8.3.6-4 に示す。

図 8.3.6-3 防水層表面の温度

図 8.3.6-4 CLT 裏面の温度

8.3.7 含水量測定

水張り終了直後を初期値とした含水量測定用試料の重量変化を図 8.3.7-1、測定値を 表 8.3.7-1 に示す。

経過日数 [day]

図 8.3.7-1 含水量測定用試料	の重量変化
--------------------	-------

経過時間	[h]	試料 A	試料 B
		重量 [g]	重量 [g]
	含水前	1415	1263
	0	1702	1595
	1	1696	1589
	2	1689	1582
	3	1681	1575
	4	1675	1568
	18	1667	1547
	24	1616	1499
	48	1605	1488
	72	1601	1482
	163	1577	1456
	523	1537	1417
	811	1491	1366
	1293	1458	1336

表 8.3.7-1 含水量測定用試料の測定値

8.4 考察

8.4.1 CLT 表面

防水施工開始直前の CLT 表面含水率はパラペット側で含水率の高い点が多くみら れた(図 8.3.2-1)。

含水率を連続測定した結果(図 8.3.2-2)では、2.0 日頃まで含水率が大きく上下しているが、これは排水直後から防水施工の期間であり、養生の取り外しや防水施工などの作業による影響を受けていると思われる。また、20 日目頃から 30 日目頃までの期間においては気温の高い日が続いており、含水率は実際よりも 1~2%程度高い数値を示している。

A2 は最も高い含水率を推移した。A2 の含水率は防水施工から一週間程度まで上昇 した後に低下傾向となった。また、A2 は湿度においても高い数値を推移した。一方 で、B1・B2 の含水率は防水施工前に大きく低下し、その後は 16%前後を推移した。 また、B1・B2 の湿度はおおむね 75%から 80%を推移し、ほとんど変化しなかった。 A1 は、防水施工開始時(2.0day)を初期値として、含水率・湿度ともに減少幅が最 も大きかった。A1 の含水率はおよそ 10 日目まで大きく低下し、その後は停滞したが 55 日目までにおよそ 16%まで低下した。一方、含水率とは反対に湿度はおよそ 12 日 目まで横ばいであり、その後は顕著に低下し始めた。この傾向から含水率と湿度は相 関関係があると考えられる。

これら4つの測定点の傾向については、脱気筒やパラペットとの距離の影響も考えられるが、B1・B2の測定結果がほとんど一致していることから、CLT(A)と CLT

(B)の測定点としたラミナの吸水性状の違いが大きく影響していると考えられる。 8.4.2 パラペット

防水施工開始直前におけるパラペットの合板表面の含水率(図 8.3.3-1)は下部が特 に高く、上部においても 30%前後まで上昇していた。これは、水張り中にパラペット 合板が下部から上部まで水分を吸い上げたためと考えられる。

パラペット天板裏の含水率(図 8.3.3-2)は約 11 日間上昇し続け、20 日目頃までは 約 16%で横ばいとなり、その後はわずかに低下傾向を示し 55 日目までにほぼ初期に 近い含水率まで低下した。湿度(図 8.3.3-3)は約 11 日目までは 95%前後で横ばいと なり、その後減少し始めた。パラペット内部の含水率や湿度の上昇が起こる原因は、 水張り中に含水したパラペットの合板が内部へ水分を供給しているためと考えられる。

8.4.3 防水下地合板裹面

今回の実験においては、防水下地合板裏面の結露は発生しなかった。

含水率および湿度の上昇はわずかであった(図 8.3.4-1・図 8.3.4-2)。これは、通気 溝付勾配断熱材の透湿抵抗が高いことで、CLT から防水下地合板への水分供給が少な かったためと考えられる。今回の実験では、防水下地合板が不具合に繋がるようなリ スクは低い結果となった。

8.4.4 CLT 目地

CLT 目地は水張り中において、裏面から漏水が続いたことから、常に CLT 目地の 下層まで浸水している状態であったといえる。 5 日目頃までの含水率は大きくばらついているが、これは含水率測定器の測定精度 が 35%以下を対象としているためである(図 8.3.5-1)。

CLT 目地の含水率は、始防水層施工後、約2ヶ月間にわたって木材の腐朽発生の条件となり得る 30%以上の高含水率を維持しており、CLT 目地内断面から吸収された水分の乾燥には極めて長い時間を要すると思われる。

8.4.5 その他の測定点

CLT 側面の含水率は変化が無かったことから、CLT 表面からの含水が CLT 側面まで到達することは無いと考えられる(図 8.3.6-1)。

脱気筒内部の温湿度は、温湿度センサーを設置した箇所が日射の影響を受けやすく、 測定値が大きく上下したこともあり、特別な傾向を見ることはできなかった(図 8.3.6-2)。

防水層表面・CLT 裏面の温度は気温・日射に依存し、試験体の温度条件を把握する ことができた(図 8.3.6-3・図 8.3.6-4)。

8.4.6 含水量測定

含水量は 24 時間までに大幅に減少したが、その後の減少は小さくなった(図 8.3.7-1)。

水張り試験時の含水量増加分に対する質量減少の比率を計算すると、暴露 55 日時点 で CLT(A)は 85%、CLT(B)は 78%であり、そのうち約 30%は防水層施工前に乾燥し ていることから、断面から吸収された水分を含んだ CLT の乾燥には著しく長時間を要 することがこの測定結果からも明らかである。

8.5 今後の課題

今回の実験では、最も含水率が高かった箇所は CLT 目地内となった。雨水は CLT 目地内部まで容易に浸入し、CLT 断面が表面よりも吸水しやすいことや物理的に通気 を取れない部位であることもあり、木材の劣化をもたらすような高含水率の状態が長 期間続くことが懸念される。これらのことから、まず、CLT 目地部には雨水を浸入さ せないことを前提とし、防水テープなどで適切な防水処置を早期に講ずることが望ま しいと考える。また、雨水が CLT 目地部へ浸入した場合を想定し、あらかじめ CLT 断面に撥水処理を施しておくことや、浸水した雨水が CLT 裏面へ排水され、かつ乾燥 が促進されるような目地断面形状や寸法についても検討する必要があると考える。

パラペットについては、パラペットの合板が含水することによってパラペット内部 を多湿環境にすることが分かった。冬季や気温の低い地域では、今回の実験結果より も湿度低下が遅くなることも考えられ、多湿環境が長く続いた場合、結露やそれに伴 う外装材の凍害、下地の腐朽などの不具合に繋がることも懸念される。このようなリ スクに配慮した工程や納まり、通気措置などの工夫も検討する必要がある。

その他の箇所について、不具合発生のリスクに繋がるような結果は無かった。しか し、今回の実験では想定していない状況において、降雨により著しく含水する恐れが あるような箇所については、適切な雨養生や乾燥を促すような措置などを計画してお くことが必要といえる。

(参考資料)

CLT 単体の吸水速度試験

1. 実験目的

CLT の表面、断面およびラミナ木口からの吸水速度についての基礎資料を得る。

2. 試験体

スギ CLT5 プライ、厚さ 150mm4 体 (A,B,C,D) から切り出した 150mm 角ブ ロック、各 2 体。

3. 実験方法

一面吸水試験。

浸漬深さ;10mm

浸漬方向;表面および断面(5プライの3プライがラミナの切断面となっている面) を浸漬させる。

吸水面とその反対面を除き、側面4面を防湿シール。

重量測定時間;1、2、4、6、8、72時間後

図 3-2 表面からの吸水

試験体を浸漬する際、気泡が入らぬように水面に対し斜めに入れる。吸水量測定
時は吸水面の余分な水滴を絞った濡れウェスで軽く取り除く。

試験体の吸水面の様子を写真 3-1 および写真 3-2 に示す。試験体と試験中の様子を写 真 3-3 に示す。

写真 3-1 断面からの吸水 試験体

写真 3-2 表面からの吸水 試験体

写真 3-3 試験体および試験中の様子

4. 実験結果

浸漬時間と含水量について、吸水面を CLT 断面とした結果を図 4-1、CLT 表面とした結果を図 4-2 に示す。

図 4-1 CLT 断面からの含水量

図 4-2 CLT 表面からの含水量

実験結果の整理		断面、表面の平均吸水速度								
元データ										
含水量[g]										
浸水面	識別番号	0	2	4	6	8	24	72		
断面	A –2	0	27	37	43	52	92	175		
	B –2	0	36	47	55	64	107	193		
	C –2	0	50	66	79	92	153	255		
	D –2	0	80	105	125	144	232	384		
	ave	0	48.25	63.75	75.5	88	146	251.75		
表面	A –3	0	3	4	7	8	15	27		
	B –3	0	4	6	8	10	20	40		
	C –3	0	20	29	37	45	87	159		
	D –3	0	11	16	21	25	56	111		
	ave	0	9.5	13.75	18.25	22	44.5	84.25		
吸水面積当たり吸水量(ím 3/m 2)		吸水面積	0.0225	m 2				
t	時間	0	2	4	6	8	24	72		
t	sec.	0	7200	14400	21600	28800	86400	259200	吸水速度係数	
t^0.5	sec ^{1/2} .	0.0	84.9	120.0	147.0	169.7	293.9	509.1	$\times10^{-6}$ m $^3/$ m $^2\cdot$ s $^{1/2}$	
断面	A –2	0	1.20E-03	1.64E-03	1.91E-03	2.31E-03	4.09E-03	7.78E-03	15.3	
	B –2	0	1.60E-03	2.09E-03	2.44E-03	2.84E-03	4.76E-03	8.58E-03	16.6	
	C –2	0	2.22E-03	2.93E-03	3.51E-03	4.09E-03	6.80E-03	1.13E-02	22	
	D –2	0	3.56E-03	4.67E-03	5.56E-03	6.40E-03	1.03E-02	1.71E-02	32.9	
								平均	21.7	
表面	A –3	0	1.33E-04	1.78E-04	3.11E-04	3.56E-04	6.67E-04	1.20E-03	2.44	
	B –3	0	1.78E-04	2.67E-04	3.56E-04	4.44E-04	8.89E-04	1.78E-03	3.6	
	C –3	0	8.89E-04	1.29E-03	1.64E-03	2.00E-03	3.87E-03	7.07E-03	14.2	
	D –3	0	4.89E-04	7.11E-04	9.33E-04	1.11E-03	2.49E-03	4.93E-03	10	
								平均	7,56	

平均吸水速度	ξ係数による 吸	及水量計算例	(1m2当たり)			面積	1	m 2			
	t	時間	0	2	4	6	8	12	24	72	
	t	sec.	0	7200	14400	21600	28800	43200	86400	259200	
	t^0.5	sec ^{1/2} .	0	84.9	120.0	147.0	169.7	207.8	293.9	509.1	
断面	吸水量 (m 3	3)	0	2.E-03	3.E-03	3.E-03	4.E-03	5.E-03	6.E-03	1.E-02	
	吸水量 (m l)		0	1841.3	2604.0	3189.2	3682.6	4510.3	6378.5	11047.8	
	浸水深さ(m)		0	3.E-03	4.E-03	5.E-03	6.E-03	8.E-03	1.E-02	2.E-02	
	浸水深さ(mm)		0.0	3.1	4.3	5.3	6.1	7.5	10.6	18.4	
表面	吸水量 (m 3)		0	6.E-04	9.E-04	1.E-03	1.E-03	2.E-03	2.E-03	4.E-03	
	吸水量 (m l)		0	641.5	907.2	1111.1	1283.0	1571.3	2222.2	3848.9	
	浸水深さ(m)		0	1.E-03	2.E-03	2.E-03	2.E-03	3.E-03	4.E-03	6.E-03	
	浸水深さ(mm	1)	0.0	1.1	1.5	1.9	2.1	2.6	3.7	6.4	

実験結果の整理		ラミナ木口	の吸水速度							
元データ										
浸水面	識別番号	0	2	4	6	8	24	72		
断面	A –2	0	27	37	43	52	92	175		
	B –2	0	36	47	55	64	107	193		
	C –2	0	50	66	79	92	153	255		
	D –2	0	80	105	125	144	232	384		
	ave	0	48.25	63.75	75.5	88	146	251.75		
表面	A –3	0	3	4	7	8	15	27		
	В –3	0	4	6	8	10	20	40		
	C –3	0	20	29	37	45	87	159		
	D –3	0	11	16	21	25	56	111		
	ave	0	9.5	13.75	18.25	22	44.5	84.25		
表面吸水量の	02/5									
表面	A –3	0	1.2	1.6	2.8	3.2	6	10.8		
	B –3	0	1.6	2.4	3.2	4	8	16		
	C –3	0	8	11.6	14.8	18	34.8	63.6		
	D –3	0	4 4	6.4	8.4	10	22.4	44.4		
同一記号試験	~~ 体の新面吸水	│ <量から表面吸	 水量の2/5を引	いた値=木口	の 面からの吸水量	**				
断面	Δ-2		25.8	35.4	40.2	48.8	86	164.2		
	R_2	0	20.0	44.6	51.8	0.0+	00	177		
	C_2	0	10	54 A	64.2	74	110.0	101.4		
	0-2 D 2	0	42	09.6	116.6	124	200.6	191.4		
	U - Z	0	/ 0.0	98.0	110.0	134	209.0	339.0		
吸水面積当た	:り吸水量 (m 3/m 2)								
吸水面積	0.0135	m 2								
t	時間	0	2	4	6	8	24	72		
t	sec.	0	7200	14400	21600	28800	86400	259200	吸水速度係数	[
t^0.5	sec ^{1/2} .	0	84.9	120.0	147.0	169.7	293.9	509.1	×10-6 m 3/m	2·s1/2
						0.015.00	6 275-02			9
断面	A –2	0	1.91E-03	2.62E-03	2.98E-03	3.01E-03	0.372-03	1.22E-02	23	
断面	A -2 B -2	0	1.91E-03 2.55E-03	2.62E-03 3.30E-03	2.98E-03 3.84E-03	3.6TE-03 4.44E-03	7.33E-03	1.22E-02 1.31E-02	23	i.3
断面	A -2 B -2 C -2 D -2	000000000000000000000000000000000000000	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03	2.98E-03 3.84E-03 4.76E-03 8.64E-03	3.6TE-03 4.44E-03 5.48E-03 9.93E-03	7.33E-03 8.76E-03	1.22E-02 1.31E-02 1.42E-02 2.52E-02	23	i.3 1.2
断面	A -2 B -2 C -2 D -2	0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03	2.98E-03 3.84E-03 4.76E-03 8.64E-03	3.6TE-03 4.44E-03 5.48E-03 9.93E-03	0.37E-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	i.3 i.2 i.1
断面	A -2 B -2 C -2 D -2	000000000000000000000000000000000000000	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 ラミナ:	2.98E-03 3.84E-03 4.76E-03 8.64E-03	3.61E-03 4.44E-03 5.48E-03 9.93E-03	7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面 	A -2 B -2 C -2 D -2	0 0 0 3.E-02	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 ラミナス	2.98E-03 3.84E-03 4.76E-03 8.64E-03	3.61E-03 4.44E-03 5.48E-03 9.93E-03	7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面 	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 ラミナ:	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面	3.61E-03 4.44E-03 5.48E-03 9.93E-03	0.37L-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面 	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 ラミナン	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面	3.61E-03 4.44E-03 5.48E-03 9.93E-03	0.37L-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y= 4.81E-05x	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03	3.61E-03 4.44E-03 5.48E-03 9.93E-03	0.37L-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	.3 .2 .1 .1
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 2.E-02 2.E-02 1.E-02	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 7.30E-03 y = 4.81E-05x y = 2.02E-0	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03	3.61E-03 4.44E-03 5.48E-03 9.93E-03	0.37L-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	.3 .2 .1 .1
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 $\overline{} \equiv +$	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03 5x + 6.12E-04 y =	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03	8E-04	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	.3 .2 .1 .1
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 7.30E-03 y = 4.81E-05x y = 2.72E-0 2.38E-05x - 2	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03 5x + 6.12E-04 y = .74E-04	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03	0.371-03 7.33E-03 8.76E-03 1.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	.3 .2 .1 .1
野面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 202E-0 200	2.98E-03 3.84E-03 4.76E-03 8.64E-03 十 口 面 + 1.21E-03 5x + 6.12E-04 5x + 6.12E-04 900 400	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500	600 0.37 L 03 7.33E-03 8.76E-03 1.55E-02 8.55E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 2.92E-0 200 E-2 線形 (B-2)	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03 5x + 6.12E-04 	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形	600 600 600 600 600	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23 25 27 48 31	
断面	A -2 B -2 C -2 D -2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 2.72E-0 2.38E-05x - 2 200 B-2 	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * * 口面 * 1.21E-03 5* + 6.12E-04 * v = 2.74E-04 300 400 - C-2 : 線形 (C-	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2)線形	6.37L-03 7.33E-03 8.76E-03 1.55E-02 8.55E-02 600 600	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均	23	
断面	A-2 B-2 C-2 D-2	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 100 A-2 線形 (A-2) 水量計算例(于	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 2.72E-0 2200 B-2 線形 (B-2).	2.98E-03 3.84E-03 4.76E-03 8.64E-03 木口面 + 1.21E-03 5x + 6.12E-04 7 = 2.74E-04 300 400 	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2)線形	6.37L-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 600 ÷ (D-2)	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045	m 2	
断面 	A-2 B-2 C-2 D-2	0 0 0 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 100 A-2 線形 (A-2) 水量計算例 (= 2	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナ: y = 4.81E-05x y = 2.42E-0 2.38E-05x-2 200 B-2 線形 (B-2) ラミナ1枚当た 4	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * 1.21E-03 * 1.21E-03 * + 1.21E-04 * 1.21E-04 * 1.21E-04 * 00 * 00 * 00 * 00 * 00 * 00 * 00 *	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形	6.37L-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 5 (D-2) 木口面積 12	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045 24	m 2	
断面 	A-2 B-2 C-2 D-2 P平均吸水速度 時間 Sec.	0 0 0 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 100 A-2 線形 (A-2) 株量計算例 (2 7200	2.62E-03 3.30E-03 4.03E-03 7.30E-03 ラミナ: 9 = 4.81E-05x y = 4.81E-05x y = 2.42E-0 2.38E-05x - 2 200 = -2 	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * 1.21E-03 * 1.21E-03 * + 1.21E-04 * 0 * C-2 * 線形 (C- り) 6 21600	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形 8 8 28800	6.37L-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 600 年(D-2) 末口面積 12 43200	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045 24 86400	m 2 23 25 27 48 31 31 31 21 25 259200	
断面 	A-2 B-2 C-2 D-2 Sec: sec ^{1/2} .	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 0 0 0 0 A-2 線形 (A-2) *量計算例(2 7200 84.9	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 4.81E-05x y = 2.72E-0 200 B-2 	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * + 1.21E-03 + 1.21E-03 * + 6.12E-04 * y = .74E-04 300 400 C-2 : 線形 (C- り) 6 21600 147.0	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形 8 2.8800 169.7	6.37L-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 kD-2) 木口面積 12 43200 207.8	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045 24 86400 293.9	m 2 72 72 73 74 73 71 72 72 72 72 72 72 72 70 9.1	
断面	A-2 B-2 C-2 D-2 Sec 時間 Sec. Sec ^{1/2} .	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 100 A-2 線形 (A-2) 水量計算例(元 2 7200 84.9 1.1875E-05	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 2.72E-0 2200 B-2 線形 (B-2). 線形 (B-2). 4 14400 120.0 1.6794E-05	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * 口面 * 1.21E-03 5× + 6.12E-04 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 =	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形 8 2.8800 169.7 2.375E-05	0.3712-03 7.33E-03 8.76E-03 1.55E-02 0 600 600 (D-2) 木口面積 12 43200 207.8 2.9088E-05	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045 0.0045 24 86400 293.9 4.1137E-05	m 2 23 25 27 48 31 31 31 31 31 31 31 31 31 31 31 31 31	
断面	A-2 B-2 C-2 D-2 时間 Sec. Sec ^{1/2} .	0 0 0 3.E-02 3.E-02 2.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.62E-03 3.30E-03 4.03E-03 7.30E-03 フミナン y = 4.81E-05x y = 2.72E-0 200 = 2.38E-05x - 2 200 = B-2 = 数形 (B-2) - ラミナ1枚当た 4 14400 120.0 1.6794E-05 16.8	2.98E-03 3.84E-03 4.76E-03 8.64E-03 * 1.21E-03 * 1.21E-03 * + 1.21E-04 * 1.21E-04	3.61E-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2)	0.37L-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 i(D-2) 木口面積 12 43200 207.8 2.9088E-05 29.1	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 0.0045 24 86400 293.9 4.1137E-05 41.1	m 2 23 25 27 48 31 31 31 71 25 9200 509.1 7.125E-05 71.3	
断面	A-2 B-2 C-2 D-2 F B B B B B B B B B B B B B B B B B B	0 0 0 3.E-02 3.E-02 2.E-02 1.E-02 5.E-03 0.E+00 0 0 年候数による吸 0 0 0 0 0	1.91E-03 2.55E-03 3.11E-03 5.60E-03 5.60E-03 00 A-2 線形 (A-2) ** 電計算例 (= 2 7200 84.9 1.1875E-05 11.9 4.40E-03	2.62E-03 3.30E-03 4.03E-03 7.30E-03 7.30E-03 7.30E-03 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.98E-03 3.84E-03 4.76E-03 8.64E-03 ホロ面 + 1.21E-03 	3.6 TE-03 4.44E-03 5.48E-03 9.93E-03 9.93E-03 9.93E-03 2.53E-05x + 1.5 500 D-2 2) 線形 8 2.8800 169.7 2.375E-05 23.8 8.80E-03	0.3712-03 7.33E-03 8.76E-03 1.55E-02 8E-04 600 (D-2) 木口面積 12 43200 207.8 2.9088E-05 29.1 1.08E-02	1.22E-02 1.31E-02 1.42E-02 2.52E-02 平均 の.0045 24 86400 293.9 4.1137E-05 41.1 1.52E-02	m 2 23 25 27 48 31 31 31 71 25 9200 509.1 7.125E-05 71.3 2.64E-02	

第9章 まとめ

9.1 保有水平耐力計算(ルート3)による中高層建築物 CLT パネル工法の設計にも利用可能な接合金物の強度性能の収集と設計式の提案

CLT パネル工法による中高層建築物を想定した場合、接合耐力の高耐力化に伴い、接合 具が比例的に増え、コストアップ及び現場施工の作業性の低下することが懸念される。ま た、中高層建築物では長期荷重や座屈に対して対応するため、5層7プライが使われるこ とが多いと予想されるため、本事業では5層7プライに対応した接合部の検証試験を行っ た。更に結露対策等に有効な接合部についても模索した。

(1)ビスの種類等の違いによる影響を確認するための試験

施工現場でのコストアップ及び施工性を向上させるため、これまで一般的に使用されて いない大型ビス及びラグスクリューの強度性能について検証を行った。結果として1本当 たりのビスの性能が従来型のビスの性能を大きく上回る結果となった。また、YET 式との 比較を行い、よく一致することを確認した。

(2) 集合型破壊による影響を確認するための試験

(公財)日本住宅・木材技術センターが制定した X マーク表示金物のうち、鋼板添え板ビ ス接合を高耐力な接合部向けにする場合、同一径のビスを採用すると多数本打たなければ ならなくなる。弊社が事業主体となった平成 27 年度林野庁委託事業では、ビスの多数本 打ちについて検証を行い、集合型破壊のメカニズムを解明した(成果は CLT 設計施工マニ ュアルに掲載)。今年度は5層7プライ及び弱軸試験体について追加試験を行った。強軸試 験体については5層7プライへの設計式の適合性、弱軸試験体については、集合型破壊し ないような設計条件について適用範囲を拡げることができた。

(3)引きボルト接合部試験

引きボルト接合については、これまで検証されていない5層7プライについて実験を行った。また、座金幅を広くした高耐力仕様及び後述の結露問題等に対応するため、現し接 合に対応した接合部を考案し、試験を実施し、強度性能の確認を行った。

257

9.2 外壁の環境性能を低下させない対策案

CLT は構造材に使用できる木質材料であるが、これまで建築物の柱・梁桁に代表される 軸部材として使われてきた構造用製材、構造用集成材や構造用単板積層材とは異なり、面 材として活用される。1 部材の寸法は大きく厚さもあり、重量もあるため、外皮となる外 壁や屋根を CLT で構成する場合(写真 9.2-1、写真 9.2-2)、CLT 間の突きつけ部は加工精 度や施工誤差を考慮すると、隙間なく施工することは困難と考えられる。外皮に隙間が生 じると、屋外と室内の空気の移動を完全に遮断することができないため、断熱性能が阻害 されると共に、耐久性能に影響する結露の発生が心配される。そこで第5章、第6章では、 CLT 間に目地が生じたことを想定した外壁の試験体を作成し、気密性能試験と結露試験を 実施して定量的にその影響を把握することにした。

写真 9.2-1 CLT パネル工法の壁の建方 写真提供: CLT 建築推進協議会

写真 9.2-2 CLT と鋼棒で張弦梁を 構成した屋根の事例

また CLT の魅力である高い強度を建築物に反映するには、大きな力を伝達できる接合金 物が必要であり、CLT パネル工法では、建物の靭性は接合部に委ねられる(写真 9.2-3、 写真 9.2-4)。しかし接合金物に使われる鋼材は熱伝導率が高く、熱橋になる可能性が高く、 接合金物や接合具を取り付けるための CLT の各種加工は、通気性や断熱性の低下、結露の 要因になることがある。そこで第7章では接合部を組み込んだ外壁の試験体を作成し、結 露試験を実施して、対応策の効果を確認することにした。

写真 9.2-3 CLT パネル工法に 使われている接合金物の事例

写真 9.2-4 CLT パネル工法に 使われている接合金物の事例

第5章~第7章では、いずれも外断熱仕様とし、CLTの室内側は現しとすることを想定 して実験を行ったが、同仕様においてはここでの実験結果から、断熱性能の低下および結 露を防ぐためには、次のような対策が有効であると考えられる。

(1) 外壁の目地

① CLT 間の隙間は、1mm 以下の精度を目標とする。ただし冬場の気温が氷点下になる 地域については、目地処理が必要である。

② 上記①の目地処理方法として、気密テープ(写真 6.2-1)や構造用合板(写真 6.2-2) による措置は有効である。

③ 断熱材と防湿防水シートの間はできるだけ少なくなるように縦胴縁のサイズを決定する。

ただし CLT の屋外側からの目地処理については、目地処理材の室内側表面温度が低下した場合には、ここで結露する可能性があり、この現象は CLT 外側の断熱材の性能に左右される。また表面温度が低下しなくても、漏気量が多いと水蒸気圧が露点を超えることがある。よって上記②を CLT の屋外側で採用する条件として、室内の温湿度管理が適正になされていることが求められ、この点は上記①でも同様である。

また目地処理を施すときの注意点として、CLTの乾燥収縮への追随と、事故的雨掛かり を受けた場合の耐久性への配慮が必要である。前者については剥脱しないこと、後者につ いては、第8章の実験結果から、施工前の含水率の管理と、施工後の雨掛かり対策が求め られる。

上記③は、今回の実験では断熱材と透湿防水シート間に 20mm 程度の空気層ができてい たが、室内から流れてきて水蒸気が透湿防水シートを通過する前に、上昇気流により通過 できず、上部で結露する現象がみられた。この状況を考慮し、ここに追記することにした。 ただし断熱材により透湿防水シートが屋外側に押し出されないよう配慮することが求めら れる。

(2) 接合金物等の措置

① CLT を貫通する部分には、室内側で気密性を確保する。

② 上記①で室内側の CLT が現しとなる場合、埋木とするときには、厚さ 25mm 以上の 木質材料で行う。ただしそのとき、CLT と埋木間に隙間が生じないように接着剤を併用す る。

③ 屋根と壁、床と壁の入隅部は室内側で、気密テープ等により気密性を確保する(写真 7.5-4)。

④ 基礎断熱を採用する時には、コンクリート基礎と CLT(または土台)間に隙間がない ように、緩衝材を挟む。

⑤ 1 階の床下を床断熱仕様とする場合には、床下下部の金物が、床の断熱材下端より高 くならないようにする。

上記①は、天井または2重床により室内側に金物等が露出しない場合に採用できる手法である。また CLT を貫通していないが、CLT を跨ぐような金物を使用する場合には、金物と CLT の隙間を塞ぐことが求められる(写真 9.2-5)。

室内側に金物等が露出する場合には、上記②のような対応策が必要になるが、今回の実験では埋木での実験はしていないため、「平成 26 年度林野庁委託事業「CLT 等新製品・新

技術利用促進事業」の内、耐火部材の開発」を参考にした。

上記③は室内側から屋外側への空気の流動を遮断するほか、図 7.5-1 のような現象を防 ぐために必要な措置で、1 階床下を床下断熱仕様とする場合には、確実に履行する必要が ある。

上記④は第7章の試験体A1および試験体B1で採用したような既製品のパッキン材(写 真7.2-1、写真7.2-2)や床振動の抑制を期待するポリウレタン系の材料(写真9.2-6)、あ るいは木製のねこ土台等が対応案の候補としてあげられる。しかしCLTパネル工法では鉛 直荷重および水平荷重をCLTが担うことになるため、構造面からの検討が、どの手法を選 択するか、重要な要素になる。また基礎断熱仕様を採用する際は、屋外側のシロアリ対策 が不十分であると、耐久性能に課題を残すことになる。

写真 9.2-5 接合金物と CLT 間の隙間処理

写真 9.2-6 床振動の抑制を期待 するポリウレタン系の緩衝材

上記⑤は、接合金物が床下一室内間の熱橋にならないことを考慮したもので、図 7.2-5 のように、接合金物が熱橋にならないように適切な措置を施した場合には、結露の発生を 防ぐことができる。

(3)設備配管等の措置① 熱橋とならないよう冷気に触れないように断熱を

行う。

CLT の室内側で配管
と CLT 間の気密性を確保
する。

③ 透湿防水シートの屋外 側から屋内側へ、水が入ら ないよう防水テープで処理 する。

④ 雨水が外壁から通気層から侵入しないように適正にシーリング処理する。

(3)を考慮した納まり 案を図 9.2-1 に示す。

図 9.2-4 CLT を使った外壁の設備配管の納まり案

9.3 事故的雨掛かりに対する対策案

木造建築の場合、上棟から防水施工までの間、大面積になるほど屋上の雨養生を完全に することは困難である。そのため、降雨などにより下地が含水した状態で防水施工する状 況が考えられ、防水施工後に下地の水分を乾燥させられることが理想とされる。そのため には脱気筒を設置し、かつ、下地が放出する水分(湿気)を脱気筒に向かって移動させる通 気路を有する防水システムが有効である。また、そのスパンの大きさに比例して建物の動 きが大きくなる場合は、それにより防水層が破断し漏水につながることを避ける対策とし て、部分粘着層付改質アスファルトシートのような下地の応力を緩衝する機能が必要であ る。

図 9.3-1 推奨仕様案

通気溝付き勾配発泡プラスチック断熱材/部分粘着層付改質アスファルトシート/ウレタ ンゴム系塗膜防水複合工法